AI Behind AlphaGo: Machine Learning and Neural Network
Yiqing Xu is a senior studying Computer Science with an interest in a variety of programming languages and a solid math background.
The board game Go has been viewed as one of the most challenging tasks for artificial intelligence because it is complex, pattern-based and hard to program. The computer program AlphaGos victory over Lee Sedol became a huge moment in the history of artificial intelligence and computer engineering. We can observe AlphaGos enormous capacity, but people know little about how it thinks. AlphaGos rules are learned and not designed, implementing machine learning as well as several neural networks to create a learning component and become better at Go. Seen in its partnership with the UKs National Health Service, AlphaGo has promising applications in other realms as well.
From March 9 to March 15 in 2016, a Go game competition took place between the worlds second-highest ranking professional player, Lee Sedol, and AlphaGo, a computer program created by Googles DeepMind Company. AlphaGos 4-1 victory over Lee Sedol became a significant moment in the history of artificial intelligence. This was the first time that a computer had beaten a human professional at Go. Most major South Korean television networks carried the game. In China, 60 million people watched it; the American Go Association and DeepMinds English-language livestream of it on YouTube had 100,000 viewers. A few hundred members of the press watched the game alongside expert commentators [1]. What makes this game so important? To understand this, we have to understand the roots of Go first.
Go, known as weiqi in China and igo in Japan, is an abstract board game for two players that dates back 3,000 years. It is a board game of abstract strategy played across a 19*19 grid. Go starts with an empty board. At each turn, a player places a black or white stone on the board [2]. The general objective of the game is to use the stones to surround more territory than the opponent. Although the rule is very simple, it creates a challenge of depth and nuance. Thus, the board game, Go, has been viewed as one of the most challenging tasks for artificial intelligence because of its complexity and pattern-based state.
In common computer games, the AI usually uses a game tree to determine the best next move in the game depending on what the opponent might do. A game tree is a directed graph that represents game states (positions) as nodes, and possible moves as edges. The root of the tree represents the state at the beginning of the game. The next level represents the possible states after the subsequent moves [3]. Take the simple game tic-tac-toe as an example, it is possible to represent all possible game states visually in Figure 1 [3].
Figure 1: A complete game tree for tic-tac-toe [3].
However, for complex games like Go, getting the best next move in the game quickly becomes impossible since the game tree for Go will contain 10^761 nodes, an overwhelming amount to store in a computer (the universe has only 10^80 atoms, for reference) [4]. This explains why Go has been viewed as one of the greatest challenges for artificial intelligence for so long. Most AIs for board games use hand-crafted rules created by AI engineers. Since these rules might be incomplete, they usually limit the intelligence of the AI. For example, for a certain stage of Go, the designers think the computer should choose one of ten selected steps, but these might be silly moves for professional players. The Go game level of the designers will influence the intelligence level of the AI.
So how did AlphaGo solve the complexity of Go as well as the restriction imposed by the game level of the designers? All previous methods for Go-playing AI relied on some kind of game tree search, combined with hand-crafted rules. AlphaGo, however, makes extensive use of machine learning to avoid using hand-crafted rules and improve efficiency. Machine learning is a type of artificial intelligence that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data.The machine learning systems search through data to look for patterns. But instead of extracting data for human comprehension as is the case in data mining applications it uses the data todetect patterns and adjust program actions accordingly [4]. AlphaGo also uses deep learning and neural networks to teach itself to play. Just like iPhotos is able to help you divide photos into different albums according to different characters because it holds the storage of countless character images that have been processed down to the pixel level, AlphaGos intelligence is based on it having been shown millions of Go positions and moves from human-played games.
AlphaGos intelligence relies on two different components: a game tree search procedure and neural networks that simplify the tree search procedure. The tree search procedure can be regarded as a brute-force approach, whereas the convolutional networks provide a level of intuition to the game-play [5]. The neural networks are conceptually similar to the evaluation function in other AIs, except that AlphaGos are learned and not designed, thus solving the problem of the game level of the designers influencing the intelligence level of AI.
Generally, two main kinds of neural networks inside AlphaGo are trained: policy network and value network. Both types of networks take the current game state as input and grade each possible next move through different formulas and output the probability of a win. On one side, the value network provides an estimate of the value of the current state of the game: what is the probability of the black player to ultimately win the game, given the current state? The output of the value network is the probability of a win. On the other side, the policy networks provide guidance regarding which action to choose, given the current state of the game. The output is a probability value for each possible legal move (the output of the network is as large as the board). Actions (moves) with higher probability values correspond to actions that have a higher chance of leading to a win. One of the most important aspects of AlphaGo is learning-ability. Deep learning allows AlphaGo to continually improve its intelligence by playing a large number of games against itself. This trains the policy network to help AlphaGo predict the next moves, which in turn trains the value network to ascertain and evaluate those positions [5]. AlphaGo looks ahead at possible moves and permutations, going through various eventualities before selecting the one it deems most likely to succeed.
In general, the combined two neural networks let AlphaGo avoid doing excess work: the policy network focuses on the present and decides the next step to save time on searching the entire game tree, and the value network focuses on the long run, analyzing the whole situation to reduce possible moves in the game tree. AlphaGo then averages the suggestion from two networks to make a final decision. What makes AlphaGo so important is that it not only follows the game theory but also involves a learning component. By playing against itself, AlphaGo automatically became better and better at Go.
The Go games were fascinating, but more important is AlphaGos demonstration of the ways artificial intelligence algorithms will affect our lives; AI will make humans better. In the 37th move in the second game, AlphaGo made a very surprising decision. A European Go champion said Its not a human move. Ive never seen a human play this move. So beautiful. This European Go champion who helped teach AlphaGo by playing against it said that though he lost almost all the games, his understanding of Go was greatly improved due to the unusual way the program played. This was also reflected by his jump in world rankings [6].
According to the data, in the United States, there are around 40,500 patients that die of misdiagnosis. The amount of medical information available is huge, so it is impossible for doctors to sort through every little thing. AIs like AlphaGo are able to collect all the medical literature history as well as medical cases, medical images, and other data in the system, and can output the best solution to help doctors. Recently, AlphaGo launched a partnership with the UKs National Health Service to improve the process of delivering care with digital solutions. AlphaGo uses its computing power to analyze health data and records. [6] This will open up new treatment opportunities to patients and assist physicians in treating patients. The increased efficiency will also reduce costs for insurance companies [6].
People already learn so much from the best humans, but now even more knowledge can be acquired from AI. [6] Artificial intelligence can surpass human capabilities in certain situations, and this may make some people uncomfortable. Artificial intelligence uses many techniques in addition to the board game artificial intelligence represented by AlphaGo, with a variety of technical fields including visual recognition and voice recognition. The fact that AI can outperform humans in a specialized area is not surprising. However, in comprehensive intelligence and learning ability, humans are much better than AIs. Although deep learning has made a lot of progress, machine learning still relies on a manual design progress. Moreover, deep learning requires a large amount of data as a basis for training and learning, and the learning process is not flexible enough.
The idea that a comprehensive artificial intelligence will control humans and will have a devastating impact on human society is fictitious. It is not impossible that AI will go beyond human, but that day is still far away, and the beyond will still be under human control.
Whether it is AlphaGo or Lee Sedol winning, overall the victory lies with humankind. The AI behind AlphaGo uses machine learning and neural networks to allow itself to continually improve its skills by playing against itself. This technique of artificial intelligence also offers potential for bettering our lives.
The AI won the Go game, but the human won the future.
[1] How Googles AlphaGo Beat a Go World Champion The Atlantic. Web. 28 Mar. 2016 <http://www.theatlantic.com/technology/archive/2016/03/the-invisible- opponent/475611/>
[2] Go (game) The Wikipedia. Web. <https://en.wikipedia.org/wiki/Go_(game)>
[3] Game Tree The Wikipedia. Web. <https://en.wikipedia.org/wiki/Game_tree>
[4] Definition machine learning The WhatIs. Web. Feb. 2016 <http://whatis.techtarget.com/definition/machine-learning?
[5] Google DeepMinds AlphaGo: How it works The tastehit. Web. 16 Mar. 2016 <https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/>
[6] AlphaGo Can Shape the Future of Healthcare The TMF. Web. 5 April. 2016 <http://whatis.techtarget.com/definition/machine-learning>
The rest is here:
AI Behind AlphaGo: Machine Learning and Neural Network
- AlphaGo led Lee 4-1 in March 2016. One round Lee Se-dol won remains the last round in which a man be.. - - December 5th, 2024 [December 5th, 2024]
- Koreans picked Google Artificial Intelligence (AI) AlphaGo as an image that comes to mind when they .. - MK - - March 16th, 2024 [March 16th, 2024]
- DeepMind AI rivals the world's smartest high schoolers at geometry - Ars Technica - January 20th, 2024 [January 20th, 2024]
- Why top AI talent is leaving Google's DeepMind - Sifted - November 20th, 2023 [November 20th, 2023]
- Who Is Ilya Sutskever, Meet The Man Who Fired Sam Altman - Dataconomy - November 20th, 2023 [November 20th, 2023]
- Microsoft's LLM 'Everything Of Thought' Method Improves AI ... - AiThority - November 20th, 2023 [November 20th, 2023]
- Absolutely, here's an article on the impact of upcoming technology - Medium - November 20th, 2023 [November 20th, 2023]
- AI: Elon Musk and xAI | Formtek Blog - Formtek Blog - November 20th, 2023 [November 20th, 2023]
- Rise of the Machines Exploring the Fascinating Landscape of ... - TechiExpert.com - November 20th, 2023 [November 20th, 2023]
- What can the current EU AI approach do to overcome the challenges ... - Modern Diplomacy - November 20th, 2023 [November 20th, 2023]
- If I had to pick one AI tool... this would be it. - Exponential View - November 20th, 2023 [November 20th, 2023]
- For the first time, AI produces better weather predictions -- and it's ... - ZME Science - November 20th, 2023 [November 20th, 2023]
- Understanding the World of Artificial Intelligence: A Comprehensive ... - Medium - October 17th, 2023 [October 17th, 2023]
- On AI and the soul-stirring char siu rice - asianews.network - October 17th, 2023 [October 17th, 2023]
- Nvidias Text-to-3D AI Tool Debuts While Its Hardware Business Hits Regulatory Headwinds - Decrypt - October 17th, 2023 [October 17th, 2023]
- One step closer to the Matrix: AI defeats human champion in Street ... - TechRadar - October 17th, 2023 [October 17th, 2023]
- The Vanishing Frontier - The American Conservative - October 17th, 2023 [October 17th, 2023]
- Alphabet: The complete guide to Google's parent company - Android Police - October 17th, 2023 [October 17th, 2023]
- How AI and ML Can Drive Sustainable Revenue Growth by Waleed ... - Digital Journal - October 9th, 2023 [October 9th, 2023]
- The better the AI gets, the harder it is to ignore - BSA bureau - October 9th, 2023 [October 9th, 2023]
- What If the Robots Were Very Nice While They Took Over the World? - WIRED - September 27th, 2023 [September 27th, 2023]
- From Draughts to DeepMind (Scary Smart) | by Sud Alogu | Aug, 2023 - Medium - August 5th, 2023 [August 5th, 2023]
- The Future of Competitive Gaming: AI Game Playing AI - Fagen wasanni - August 5th, 2023 [August 5th, 2023]
- AI's Transformative Impact on Industries - Fagen wasanni - August 5th, 2023 [August 5th, 2023]
- Analyzing the impact of AI in anesthesiology - INDIAai - August 5th, 2023 [August 5th, 2023]
- Economic potential of generative AI - McKinsey - June 20th, 2023 [June 20th, 2023]
- The Intersection of Reinforcement Learning and Deep Learning - CityLife - June 20th, 2023 [June 20th, 2023]
- Chinese AI Giant SenseTime Unveils USD559 Robot That Can Play ... - Yicai Global - June 20th, 2023 [June 20th, 2023]
- Cyber attacks on AI a problem for the future - Verdict - June 20th, 2023 [June 20th, 2023]
- Taming AI to the benefit of humans - Asia News NetworkAsia News ... - asianews.network - May 20th, 2023 [May 20th, 2023]
- Evolutionary reinforcement learning promises further advances in ... - EurekAlert - May 20th, 2023 [May 20th, 2023]
- Commentary: AI's successes - and problems - stem from our own ... - CNA - May 20th, 2023 [May 20th, 2023]
- Machine anxiety: How to reduce confusion and fear about AI technology - Thaiger - May 20th, 2023 [May 20th, 2023]
- We need more than ChatGPT to have true AI. It is merely the first ingredient in a complex recipe - Freethink - May 20th, 2023 [May 20th, 2023]
- Taming AI to the benefit of humans - Opinion - Chinadaily.com.cn - China Daily - May 16th, 2023 [May 16th, 2023]
- To understand AI's problems look at the shortcuts taken to create it - EastMojo - May 16th, 2023 [May 16th, 2023]
- Terence Tao Leads White House's Generative AI Working Group ... - Pandaily - May 16th, 2023 [May 16th, 2023]
- Why we should be concerned about advanced AI - Epigram - May 16th, 2023 [May 16th, 2023]
- Purdue President Chiang to grads: Let Boilermakers lead in ... - Purdue University - May 16th, 2023 [May 16th, 2023]
- 12 shots at staying ahead of AI in the workplace - pharmaphorum - May 16th, 2023 [May 16th, 2023]
- Hypotheses and Visions for an Intelligent World - Huawei - May 16th, 2023 [May 16th, 2023]
- Cloud storage is the key to unlocking AI's full potential for businesses - TechRadar - May 16th, 2023 [May 16th, 2023]
- The Quantum Frontier: Disrupting AI and Igniting a Patent Race - Lexology - April 19th, 2023 [April 19th, 2023]
- Putin and Xi seek to weaponize Artificial Intelligence against America - FOX Bangor/ABC 7 News and Stories - April 19th, 2023 [April 19th, 2023]
- The Future of Generative Large Language Models and Potential ... - JD Supra - April 19th, 2023 [April 19th, 2023]
- A Chatbot Beat the SAT. What Now? - The Atlantic - March 23rd, 2023 [March 23rd, 2023]
- Exclusive: See the cover for Benjamn Labatut's new novel, The ... - Literary Hub - March 23rd, 2023 [March 23rd, 2023]
- These companies are creating ChatGPT alternatives - Tech Monitor - March 23rd, 2023 [March 23rd, 2023]
- Google's AlphaGo AI Beats Human Go Champion | PCMag - February 24th, 2023 [February 24th, 2023]
- AlphaGo: using machine learning to master the ancient game of Go - Google - February 10th, 2023 [February 10th, 2023]
- Google AlphaGo: How a recreational program will change the world - February 10th, 2023 [February 10th, 2023]
- Computer Go - Wikipedia - November 22nd, 2022 [November 22nd, 2022]
- AvataGo's Metaverse AR Environment will be Your Eternal Friend - Digital Journal - September 17th, 2022 [September 17th, 2022]
- This AI-Generated Artwork Won 1st Place At Fine Arts Contest And Enraged Artists - Bored Panda - September 3rd, 2022 [September 3rd, 2022]
- The best performing from AI in blockchain games, a new DRL model published by rct AI based on training AI in Axie Infinity, AI surpasses the real... - September 3rd, 2022 [September 3rd, 2022]
- Three Methods Researchers Use To Understand AI Decisions - RTInsights - August 20th, 2022 [August 20th, 2022]
- What is my chatbot thinking? Nothing. Here's why the Google sentient bot debate is flawed - Diginomica - August 7th, 2022 [August 7th, 2022]
- Opinion: Can AI be creative? - Los Angeles Times - August 2nd, 2022 [August 2nd, 2022]
- AI predicts the structure of all known proteins and opens a new universe for science - EL PAS USA - August 2nd, 2022 [August 2nd, 2022]
- What is Ethereum Gray Glacier? Should you be worried? - Cryptopolitan - June 24th, 2022 [June 24th, 2022]
- How AI and human intelligence will beat cancer - VentureBeat - June 19th, 2022 [June 19th, 2022]
- Race-by-race tips and preview for Newcastle on Monday - Sydney Morning Herald - June 19th, 2022 [June 19th, 2022]
- A gentle introduction to model-free and model-based reinforcement learning - TechTalks - June 13th, 2022 [June 13th, 2022]
- The role of 'God' in the 'Matrix' - Analytics India Magazine - June 3rd, 2022 [June 3rd, 2022]
- The Powerful New AI Hardware of the Future - CDOTrends - June 3rd, 2022 [June 3rd, 2022]
- The 50 Best Documentaries of All Time 24/7 Wall St. - 24/7 Wall St. - June 3rd, 2022 [June 3rd, 2022]
- How Could AI be used in the Online Casino Industry - Rebellion Research - April 12th, 2022 [April 12th, 2022]
- 5 Times Artificial Intelligence Have Busted World Champions - Analytics Insight - April 2nd, 2022 [April 2nd, 2022]
- The Guardian view on bridging human and machine learning: its all in the game - The Guardian - April 2nd, 2022 [April 2nd, 2022]
- How to Strengthen America's Artificial Intelligence Innovation - The National Interest - April 2nd, 2022 [April 2nd, 2022]
- Why it's time to address the ethical dilemmas of artificial intelligence - Economic Times - April 2nd, 2022 [April 2nd, 2022]
- About - Deepmind - March 18th, 2022 [March 18th, 2022]
- Experts believe a neuro-symbolic approach to be the next big thing in AI. Does it live up to the claims? - Analytics India Magazine - March 18th, 2022 [March 18th, 2022]
- Measuring Attention In Science And Technology - Forbes - March 18th, 2022 [March 18th, 2022]
- The Discontents Of Artificial Intelligence In 2022 - Inventiva - March 16th, 2022 [March 16th, 2022]
- Is AI the Future of Sports? - Built In - March 5th, 2022 [March 5th, 2022]
- This is the reason Demis Hassabis started DeepMind - MIT Technology Review - February 28th, 2022 [February 28th, 2022]
- Sony's AI system outraces some of the world's best e-sports drivers | The Asahi Shimbun: Breaking News, Japan News and Analysis - Asahi Shimbun - February 28th, 2022 [February 28th, 2022]
- SysMoore: The Next 10 Years, The Next 1,000X In Performance - The Next Platform - February 28th, 2022 [February 28th, 2022]
- The World's Shortest List Of Technologies To Watch In 2022 - Forbes - February 3rd, 2022 [February 3rd, 2022]