Artificial intelligence is smart, but does it play well with others? – MIT News
When it comes to games such as chess or Go, artificial intelligence (AI) programs have far surpassed the best players in the world. These "superhuman" AIs are unmatched competitors, but perhaps harder than competing against humans is collaborating with them. Can the same technology get along with people?
In a new study, MIT Lincoln Laboratory researchers sought to find out how well humans could play the cooperative card game Hanabi with an advanced AI model trained to excel at playing with teammates it has never met before. In single-blind experiments, participants played two series of the game: one with the AI agent as their teammate, and the other with a rule-based agent, a bot manually programmed to play in a predefined way.
The results surprised the researchers. Not only were the scores no better with the AI teammate than with the rule-based agent, but humans consistently hated playing with their AI teammate. They found it to be unpredictable, unreliable, and untrustworthy, and felt negatively even when the team scored well. A paper detailing this study has been accepted to the 2021 Conference on Neural Information Processing Systems (NeurIPS).
"It really highlights the nuanced distinction between creating AI that performs objectively well and creating AI that is subjectively trusted or preferred," says Ross Allen, co-author of the paper and a researcher in the Artificial Intelligence Technology Group. "It may seem those things are so close that there's not really daylight between them, but this study showed that those are actually two separate problems. We need to work on disentangling those."
Humans hating their AI teammates could be of concern for researchers designing this technology to one day work with humans on real challenges like defending from missiles or performing complex surgery. This dynamic, called teaming intelligence, is a next frontier in AI research, and it uses a particular kind of AI called reinforcement learning.
A reinforcement learning AI is not told which actions to take, but instead discovers which actions yield the most numerical "reward" by trying out scenarios again and again. It is this technology that has yielded the superhuman chess and Go players. Unlike rule-based algorithms, these AI arent programmed to follow "if/then" statements, because the possible outcomes of the human tasks they're slated to tackle, like driving a car, are far too many to code.
"Reinforcement learning is a much more general-purpose way of developing AI. If you can train it to learn how to play the game of chess, that agent won't necessarily go drive a car. But you can use the same algorithms to train a different agent to drive a car, given the right data Allen says. "The sky's the limit in what it could, in theory, do."
Bad hints, bad plays
Today, researchers are using Hanabi to test the performance of reinforcement learning models developed for collaboration, in much the same way that chess has served as a benchmark for testing competitive AI for decades.
The game of Hanabi is akin to a multiplayer form of Solitaire. Players work together to stack cards of the same suit in order. However, players may not view their own cards, only the cards that their teammates hold. Each player is strictly limited in what they can communicate to their teammates to get them to pick the best card from their own hand to stack next.
The Lincoln Laboratory researchers did not develop either the AI or rule-based agents used in this experiment. Both agents represent the best in their fields for Hanabi performance. In fact, when the AI model was previously paired with an AI teammate it had never played with before, the team achieved the highest-ever score for Hanabi play between two unknown AI agents.
"That was an important result," Allen says. "We thought, if these AI that have never met before can come together and play really well, then we should be able to bring humans that also know how to play very well together with the AI, and they'll also do very well. That's why we thought the AI team would objectively play better, and also why we thought that humans would prefer it, because generally we'll like something better if we do well."
Neither of those expectations came true. Objectively, there was no statistical difference in the scores between the AI and the rule-based agent. Subjectively, all 29 participants reported in surveys a clear preference toward the rule-based teammate. The participants were not informed which agent they were playing with for which games.
"One participant said that they were so stressed out at the bad play from the AI agent that they actually got a headache," says Jaime Pena, a researcher in the AI Technology and Systems Group and an author on the paper. "Another said that they thought the rule-based agent was dumb but workable, whereas the AI agent showed that it understood the rules, but that its moves were not cohesive with what a team looks like. To them, it was giving bad hints, making bad plays."
Inhuman creativity
This perception of AI making "bad plays" links to surprising behavior researchers have observed previously in reinforcement learning work. For example, in 2016, when DeepMind's AlphaGo first defeated one of the worlds best Go players, one of the most widely praised moves made by AlphaGo was move 37 in game 2, a move so unusual that human commentators thought it was a mistake. Later analysis revealed that the move was actually extremely well-calculated, and was described as genius.
Such moves might be praised when an AI opponent performs them, but they're less likely to be celebrated in a team setting. The Lincoln Laboratory researchers found that strange or seemingly illogical moves were the worst offenders in breaking humans' trust in their AI teammate in these closely coupled teams. Such moves not only diminished players' perception of how well they and their AI teammate worked together, but also how much they wanted to work with the AI at all, especially when any potential payoff wasnt immediately obvious.
"There was a lot of commentary about giving up, comments like 'I hate working with this thing,'" adds Hosea Siu, also an author of the paper and a researcher in the Control and Autonomous Systems Engineering Group.
Participants who rated themselves as Hanabi experts, which the majority of players in this study did, more often gave up on the AI player. Siu finds this concerning for AI developers, because key users of this technology will likely be domain experts.
"Let's say you train up a super-smart AI guidance assistant for a missile defense scenario. You aren't handing it off to a trainee; you're handing it off to your experts on your ships who have been doing this for 25 years. So, if there is a strong expert bias against it in gaming scenarios, it's likely going to show up in real-world ops," he adds.
Squishy humans
The researchers note that the AI used in this study wasn't developed for human preference. But, that's part of the problem not many are. Like most collaborative AI models, this model was designed to score as high as possible, and its success has been benchmarked by its objective performance.
If researchers dont focus on the question of subjective human preference, "then we won't create AI that humans actually want to use," Allen says. "It's easier to work on AI that improves a very clean number. It's much harder to work on AI that works in this mushier world of human preferences."
Solving this harder problem is the goal of the MeRLin (Mission-Ready Reinforcement Learning) project, which this experiment was funded under in Lincoln Laboratory's Technology Office, in collaboration with the U.S. Air Force Artificial Intelligence Accelerator and the MIT Department of Electrical Engineering and Computer Science. The project is studying what has prevented collaborative AI technology from leaping out of the game space and into messier reality.
The researchers think that the ability for the AI to explain its actions will engender trust. This will be the focus of their work for the next year.
"You can imagine we rerun the experiment, but after the fact and this is much easier said than done the human could ask, 'Why did you do that move, I didn't understand it?" If the AI could provide some insight into what they thought was going to happen based on their actions, then our hypothesis is that humans would say, 'Oh, weird way of thinking about it, but I get it now,' and they'd trust it. Our results would totally change, even though we didn't change the underlying decision-making of the AI," Allen says.
Like a huddle after a game, this kind of exchange is often what helps humans build camaraderie and cooperation as a team.
"Maybe it's also a staffing bias. Most AI teams dont have people who want to work on these squishy humans and their soft problems," Siu adds, laughing. "It's people who want to do math and optimization. And that's the basis, but that's not enough."
Mastering a game such as Hanabi between AI and humans could open up a universe of possibilities for teaming intelligence in the future. But until researchers can close the gap between how well an AI performs and how much a human likes it, the technology may well remain at machine versus human.
See the original post:
Artificial intelligence is smart, but does it play well with others? - MIT News
- Koreans picked Google Artificial Intelligence (AI) AlphaGo as an image that comes to mind when they .. - MK - - March 16th, 2024 [March 16th, 2024]
- DeepMind AI rivals the world's smartest high schoolers at geometry - Ars Technica - January 20th, 2024 [January 20th, 2024]
- Why top AI talent is leaving Google's DeepMind - Sifted - November 20th, 2023 [November 20th, 2023]
- Who Is Ilya Sutskever, Meet The Man Who Fired Sam Altman - Dataconomy - November 20th, 2023 [November 20th, 2023]
- Microsoft's LLM 'Everything Of Thought' Method Improves AI ... - AiThority - November 20th, 2023 [November 20th, 2023]
- Absolutely, here's an article on the impact of upcoming technology - Medium - November 20th, 2023 [November 20th, 2023]
- AI: Elon Musk and xAI | Formtek Blog - Formtek Blog - November 20th, 2023 [November 20th, 2023]
- Rise of the Machines Exploring the Fascinating Landscape of ... - TechiExpert.com - November 20th, 2023 [November 20th, 2023]
- What can the current EU AI approach do to overcome the challenges ... - Modern Diplomacy - November 20th, 2023 [November 20th, 2023]
- If I had to pick one AI tool... this would be it. - Exponential View - November 20th, 2023 [November 20th, 2023]
- For the first time, AI produces better weather predictions -- and it's ... - ZME Science - November 20th, 2023 [November 20th, 2023]
- Understanding the World of Artificial Intelligence: A Comprehensive ... - Medium - October 17th, 2023 [October 17th, 2023]
- On AI and the soul-stirring char siu rice - asianews.network - October 17th, 2023 [October 17th, 2023]
- Nvidias Text-to-3D AI Tool Debuts While Its Hardware Business Hits Regulatory Headwinds - Decrypt - October 17th, 2023 [October 17th, 2023]
- One step closer to the Matrix: AI defeats human champion in Street ... - TechRadar - October 17th, 2023 [October 17th, 2023]
- The Vanishing Frontier - The American Conservative - October 17th, 2023 [October 17th, 2023]
- Alphabet: The complete guide to Google's parent company - Android Police - October 17th, 2023 [October 17th, 2023]
- How AI and ML Can Drive Sustainable Revenue Growth by Waleed ... - Digital Journal - October 9th, 2023 [October 9th, 2023]
- The better the AI gets, the harder it is to ignore - BSA bureau - October 9th, 2023 [October 9th, 2023]
- What If the Robots Were Very Nice While They Took Over the World? - WIRED - September 27th, 2023 [September 27th, 2023]
- From Draughts to DeepMind (Scary Smart) | by Sud Alogu | Aug, 2023 - Medium - August 5th, 2023 [August 5th, 2023]
- The Future of Competitive Gaming: AI Game Playing AI - Fagen wasanni - August 5th, 2023 [August 5th, 2023]
- AI's Transformative Impact on Industries - Fagen wasanni - August 5th, 2023 [August 5th, 2023]
- Analyzing the impact of AI in anesthesiology - INDIAai - August 5th, 2023 [August 5th, 2023]
- Economic potential of generative AI - McKinsey - June 20th, 2023 [June 20th, 2023]
- The Intersection of Reinforcement Learning and Deep Learning - CityLife - June 20th, 2023 [June 20th, 2023]
- Chinese AI Giant SenseTime Unveils USD559 Robot That Can Play ... - Yicai Global - June 20th, 2023 [June 20th, 2023]
- Cyber attacks on AI a problem for the future - Verdict - June 20th, 2023 [June 20th, 2023]
- Taming AI to the benefit of humans - Asia News NetworkAsia News ... - asianews.network - May 20th, 2023 [May 20th, 2023]
- Evolutionary reinforcement learning promises further advances in ... - EurekAlert - May 20th, 2023 [May 20th, 2023]
- Commentary: AI's successes - and problems - stem from our own ... - CNA - May 20th, 2023 [May 20th, 2023]
- Machine anxiety: How to reduce confusion and fear about AI technology - Thaiger - May 20th, 2023 [May 20th, 2023]
- We need more than ChatGPT to have true AI. It is merely the first ingredient in a complex recipe - Freethink - May 20th, 2023 [May 20th, 2023]
- Taming AI to the benefit of humans - Opinion - Chinadaily.com.cn - China Daily - May 16th, 2023 [May 16th, 2023]
- To understand AI's problems look at the shortcuts taken to create it - EastMojo - May 16th, 2023 [May 16th, 2023]
- Terence Tao Leads White House's Generative AI Working Group ... - Pandaily - May 16th, 2023 [May 16th, 2023]
- Why we should be concerned about advanced AI - Epigram - May 16th, 2023 [May 16th, 2023]
- Purdue President Chiang to grads: Let Boilermakers lead in ... - Purdue University - May 16th, 2023 [May 16th, 2023]
- 12 shots at staying ahead of AI in the workplace - pharmaphorum - May 16th, 2023 [May 16th, 2023]
- Hypotheses and Visions for an Intelligent World - Huawei - May 16th, 2023 [May 16th, 2023]
- Cloud storage is the key to unlocking AI's full potential for businesses - TechRadar - May 16th, 2023 [May 16th, 2023]
- The Quantum Frontier: Disrupting AI and Igniting a Patent Race - Lexology - April 19th, 2023 [April 19th, 2023]
- Putin and Xi seek to weaponize Artificial Intelligence against America - FOX Bangor/ABC 7 News and Stories - April 19th, 2023 [April 19th, 2023]
- The Future of Generative Large Language Models and Potential ... - JD Supra - April 19th, 2023 [April 19th, 2023]
- A Chatbot Beat the SAT. What Now? - The Atlantic - March 23rd, 2023 [March 23rd, 2023]
- Exclusive: See the cover for Benjamn Labatut's new novel, The ... - Literary Hub - March 23rd, 2023 [March 23rd, 2023]
- These companies are creating ChatGPT alternatives - Tech Monitor - March 23rd, 2023 [March 23rd, 2023]
- Google's AlphaGo AI Beats Human Go Champion | PCMag - February 24th, 2023 [February 24th, 2023]
- AlphaGo: using machine learning to master the ancient game of Go - Google - February 10th, 2023 [February 10th, 2023]
- AI Behind AlphaGo: Machine Learning and Neural Network - February 10th, 2023 [February 10th, 2023]
- Google AlphaGo: How a recreational program will change the world - February 10th, 2023 [February 10th, 2023]
- Computer Go - Wikipedia - November 22nd, 2022 [November 22nd, 2022]
- AvataGo's Metaverse AR Environment will be Your Eternal Friend - Digital Journal - September 17th, 2022 [September 17th, 2022]
- This AI-Generated Artwork Won 1st Place At Fine Arts Contest And Enraged Artists - Bored Panda - September 3rd, 2022 [September 3rd, 2022]
- The best performing from AI in blockchain games, a new DRL model published by rct AI based on training AI in Axie Infinity, AI surpasses the real... - September 3rd, 2022 [September 3rd, 2022]
- Three Methods Researchers Use To Understand AI Decisions - RTInsights - August 20th, 2022 [August 20th, 2022]
- What is my chatbot thinking? Nothing. Here's why the Google sentient bot debate is flawed - Diginomica - August 7th, 2022 [August 7th, 2022]
- Opinion: Can AI be creative? - Los Angeles Times - August 2nd, 2022 [August 2nd, 2022]
- AI predicts the structure of all known proteins and opens a new universe for science - EL PAS USA - August 2nd, 2022 [August 2nd, 2022]
- What is Ethereum Gray Glacier? Should you be worried? - Cryptopolitan - June 24th, 2022 [June 24th, 2022]
- How AI and human intelligence will beat cancer - VentureBeat - June 19th, 2022 [June 19th, 2022]
- Race-by-race tips and preview for Newcastle on Monday - Sydney Morning Herald - June 19th, 2022 [June 19th, 2022]
- A gentle introduction to model-free and model-based reinforcement learning - TechTalks - June 13th, 2022 [June 13th, 2022]
- The role of 'God' in the 'Matrix' - Analytics India Magazine - June 3rd, 2022 [June 3rd, 2022]
- The Powerful New AI Hardware of the Future - CDOTrends - June 3rd, 2022 [June 3rd, 2022]
- The 50 Best Documentaries of All Time 24/7 Wall St. - 24/7 Wall St. - June 3rd, 2022 [June 3rd, 2022]
- How Could AI be used in the Online Casino Industry - Rebellion Research - April 12th, 2022 [April 12th, 2022]
- 5 Times Artificial Intelligence Have Busted World Champions - Analytics Insight - April 2nd, 2022 [April 2nd, 2022]
- The Guardian view on bridging human and machine learning: its all in the game - The Guardian - April 2nd, 2022 [April 2nd, 2022]
- How to Strengthen America's Artificial Intelligence Innovation - The National Interest - April 2nd, 2022 [April 2nd, 2022]
- Why it's time to address the ethical dilemmas of artificial intelligence - Economic Times - April 2nd, 2022 [April 2nd, 2022]
- About - Deepmind - March 18th, 2022 [March 18th, 2022]
- Experts believe a neuro-symbolic approach to be the next big thing in AI. Does it live up to the claims? - Analytics India Magazine - March 18th, 2022 [March 18th, 2022]
- Measuring Attention In Science And Technology - Forbes - March 18th, 2022 [March 18th, 2022]
- The Discontents Of Artificial Intelligence In 2022 - Inventiva - March 16th, 2022 [March 16th, 2022]
- Is AI the Future of Sports? - Built In - March 5th, 2022 [March 5th, 2022]
- This is the reason Demis Hassabis started DeepMind - MIT Technology Review - February 28th, 2022 [February 28th, 2022]
- Sony's AI system outraces some of the world's best e-sports drivers | The Asahi Shimbun: Breaking News, Japan News and Analysis - Asahi Shimbun - February 28th, 2022 [February 28th, 2022]
- SysMoore: The Next 10 Years, The Next 1,000X In Performance - The Next Platform - February 28th, 2022 [February 28th, 2022]
- The World's Shortest List Of Technologies To Watch In 2022 - Forbes - February 3rd, 2022 [February 3rd, 2022]