How Does AlphaZero Play Chess? – Chess.com
By now you've heard about the new kid on the chess-engine block, AlphaZero, and its crushing match win vs Stockfish, the strongest open-source chess engine.
The reactions from the chess community to this match ranged from admiration to utter disbelief.
But how does AlphaZero actually work?
How is it different from other engines and why is it so much better? In this two-part article Ill try to explain a bit of what goes on under AlphaZeros hood.
First, lets reflect on what happened. AlphaZero was developed by DeepMind (a Google-owned company) to specialize in learning how to play two-player, alternate-move games. It was primed with the rules of chess, and nothing else.
It then started learning chess by playing games against itself. Game one would have involved totally random moves. At the end of this game, AlphaZero had learned that the losing side had done stuff that wasnt all that smart, and that the winning side had played better. AlphaZero had taught itself its first chess lesson. The quality of chess in game two was a just a tiny bit better than the first.
Nine hours and 44 million games of split-personality chess later, AlphaZero had (very possibly) taught itself enough to become the greatest chess player, silicon- or carbon-based, of all time.
How on earth did it do it?
Google headquarters in London from inside, with the DeepMind section on the eighth floor. | Photo: Maria Emelianova/Chess.com.
It didnt calculate more variations than Stockfish.
Quite the opposite in fact: Stockfish examined 70 million positions per second while AlphaZero contented itself with about 0.1 percent of that: 80,000 per second. This brings to mind a remark made by Jonathan Rowson after Michael Adams crushed him in a match in 1998: I was amazed at how little he saw.
Stronger players tend to calculate fewer variations than weaker ones. Instead their highly-honed intuition guides them to focus their calculation on the most relevant lines. This is exactly what AlphaZero did. It taught itself chess in quite a human-like way, developing an intuition like no other chess machine has ever done, and it combined this with an amount of cold calculation.
Lets see how it did that.
IM Danny Rensch explains the AlphaZero match in a series of videos on Twitch.
The Analysis Tree
Chess engines use a tree-like structure to calculate variations, and use an evaluation function to assign the position at the end of a variation a value like +1.5 (Whites advantage is worth a pawn and a half) or -9.0 (Blacks advantage is worth a queen). AlphaZeros approach to both calculating variations and evaluating positions is radically different to what other engines do.
All popular chess engines are based on the minimax algorithm, which is a fancy name that simply means you pick the move that gives you the biggest advantage regardless of what the opponent plays. Minimax is invariably enhanced with alpha-beta pruning, which is used to reduce the size of the tree of variations to be examined. Heres an extreme example of how this pruning works: Say an engine is considering a move and sees its opponent has 20 feasible replies. One of those replies leads to a forced checkmate. Then the engine can abandon (or cutoff) the move it was considering, no matter how well it would stand after any of the other 19 replies.
Another issue is that if an engine prunes away moves that only seem bad, e.g. those that lose material, it will fail to consider any kind of sacrifice, which is partly why early engines were so materialistic. In current engines like Stockfish, alpha-beta pruning is combined with a range of other chess-specific enhancements such the killer-move heuristic (a strong move in another similar variation is likely to be strong here), counter-move heuristic (some moves have natural responses regardless of position I bet youve often met axb5 with axb5, right?) and many others.
AlphaZero, in contrast, uses Monte Carlo Tree Search, or MCTS for short. Monte Carlo is famous for its casinos, so when you see this term in a computing context it means theres something random going on. An engine using pure MCTS would evaluate a position by generating a number of move sequences (called playouts) from that position randomly, and averaging the final scores (win/draw/loss) that they yield. This approach may seem altogether too simple, but if you think about it youll realize its actually quite a plausible way of evaluating a position.
The Monte Carlo Casino.
AlphaZero creates a number of playouts on each move (800 during its training). It also augments pure MCTS by preferring moves that it has not tried (much) already, that seem probable and that seem to lead to good positions, where good means that the evaluation function (more on this next article) gives them a high value. Its really creating semi-random playouts, lines that seem appropriate to its ever-improving evaluation function. Isnt this quite like how you calculate? By focussing on plausible lines of play?
Notice that so far theres absolutely nothing chess-specific in what AlphaZero is doing. In my next article, when we look at how AlphaZero learns to evaluate chess positions, well see theres absolutely nothing chess-specific there either!
Like a newborn baby, AlphaZero came into the world with little knowledge, but is massively geared to learn. One weakness of MCTS is that since its based on creating semi-random playouts, it can get it completely wrong in tense positions where there is one precise line of optimal play. If it doesnt randomly select this line, it is likely to blunder. This blindness was probably what caused AlphaZeros Go playing predecessor, AlphaGo, to lose a game to 18-time world Go champion Lee Sedol. It seems not to have been an issue in the match with Stockfish, however.
MCTS has been used previously for two-player gameplay, but was found to perform much worse than the well-established minimax plus alpha-beta approach. In AlphaZero, MCTS combines really well with the employed neural network-based evaluation function.
In my next article, Ill explain more about this neural network and especially the fascinating way it learns, on its own, how to evaluate chess positions. Ill also describe the hardware AlphaZero runs on, and make some predictions about how all this will impact chess as we know it.
What do you think about how AlphaZero plays chess? Let us know in the comments.
Corrections: AlphaZero creates a number of playouts on each move, not 800. That was during training.
More:
How Does AlphaZero Play Chess? - Chess.com
- Demis Hassabis - when the chess prodigy won the Nobel Prize in Chemistry - Chess.com - October 14th, 2024 [October 14th, 2024]
- AI Could Learn a Thing or Two From Rat Brains - The Daily Beast - November 13th, 2023 [November 13th, 2023]
- Episode What sets great teams apart | Lane Shackleton (CPO of Coda) - Mirchi Plus - October 1st, 2023 [October 1st, 2023]
- The timeless charm of of 'Chaturanga' - Daily Pioneer - October 1st, 2023 [October 1st, 2023]
- Creating New Stories That Don't Suck - Hollywood in Toto - October 1st, 2023 [October 1st, 2023]
- AI Agents: Adapting to the Future of Software Development - ReadWrite - October 1st, 2023 [October 1st, 2023]
- The Race for AGI: Approaches of Big Tech Giants - Fagen wasanni - July 30th, 2023 [July 30th, 2023]
- Book Review: Re-engineering the Chess Classics by GM Matthew ... - Chess.com - June 4th, 2023 [June 4th, 2023]
- The Sparrow Effect: How DeepMind is Rewriting the AI Script - CityLife - June 4th, 2023 [June 4th, 2023]
- Vitalik Buterin Exclusive Interview: Longevity, AI and More - Lifespan.io News - June 4th, 2023 [June 4th, 2023]
- How to play chess against ChatGPT (and why you probably shouldn't) - Android Authority - May 29th, 2023 [May 29th, 2023]
- Weekend Movers - Conflux (CFX) and Klaytn (KLAY) - Securities.io - May 16th, 2023 [May 16th, 2023]
- How technology reinvented chess as a global social network - Financial Times - May 8th, 2023 [May 8th, 2023]
- Our moral panic over AI - The Spectator Australia - April 13th, 2023 [April 13th, 2023]
- Liability Considerations for Superhuman (and - Fenwick & West LLP - April 13th, 2023 [April 13th, 2023]
- Aston by-election minus one day The Poll Bludger - The Poll Bludger - April 2nd, 2023 [April 2nd, 2023]
- No-Castling Masters: Kramnik and Caruana will play in Dortmund - ChessBase - March 26th, 2023 [March 26th, 2023]
- AI is teamwork Bits&Chips - Bits&Chips - March 20th, 2023 [March 20th, 2023]
- Resolve Strategic nuclear subs poll (open thread) The Poll Bludger - The Poll Bludger - March 20th, 2023 [March 20th, 2023]
- How AlphaZero Learns Chess - Chess.com - February 24th, 2023 [February 24th, 2023]
- AI Topic: AlphaZero, ChatGPT, Bard, Stable Diffusion and more! - February 24th, 2023 [February 24th, 2023]
- AlphaZero Tackles Chess Variants - by Dennis Monokroussos - February 20th, 2023 [February 20th, 2023]
- AlphaZero Vs. Stockfish 8 | AI Is Conquering Computer Chess - February 10th, 2023 [February 10th, 2023]
- Stockfish (chess) - Wikipedia - November 22nd, 2022 [November 22nd, 2022]
- AlphaZero Chess Engine: The Ultimate Guide - October 14th, 2022 [October 14th, 2022]
- Whos going to save us from bad AI? - MIT Technology Review - October 14th, 2022 [October 14th, 2022]
- DeepMinds game-playing AI has beaten a 50-year-old record in computer science - MIT Technology Review - October 8th, 2022 [October 8th, 2022]
- The Download: TikTok moral panics, and DeepMinds record-breaking AI - MIT Technology Review - October 8th, 2022 [October 8th, 2022]
- Top 5 stories of the week: DeepMind and OpenAI advancements, Intels plan for GPUs, Microsofts zero-day flaws - VentureBeat - October 8th, 2022 [October 8th, 2022]
- Taxing times (open thread) The Poll Bludger - The Poll Bludger - October 8th, 2022 [October 8th, 2022]
- AlphaGo Zero Explained In One Diagram | by David Foster - Medium - October 1st, 2022 [October 1st, 2022]
- A chess scandal brings fresh attention to computers role in the game - The Record by Recorded Future - October 1st, 2022 [October 1st, 2022]
- Meta AI Boss: current AI methods will never lead to true intelligence - Gizchina.com - October 1st, 2022 [October 1st, 2022]
- Meta's AI guru LeCun: Most of today's AI approaches will never lead to true intelligence - ZDNet - September 24th, 2022 [September 24th, 2022]
- Stockfish - Chess Engines - Chess.com - September 9th, 2022 [September 9th, 2022]
- DeepMinds AlphaFold could be the future of science and AI - Vox.com - August 7th, 2022 [August 7th, 2022]
- Correspondence chess server, Go (weiqi) games online - FICGS - July 4th, 2022 [July 4th, 2022]
- Chennai Chess Olympiad and AI - Analytics India Magazine - June 28th, 2022 [June 28th, 2022]
- Yann LeCun has a bold new vision for the future of AI - MIT Technology Review - June 28th, 2022 [June 28th, 2022]
- Special Street Fighter 35th anniversary website launched, features impressive timeline of game release dates over the years - EventHubs - June 28th, 2022 [June 28th, 2022]
- The Nightmarish Frontier of AI in Chess - uschess.org - June 19th, 2022 [June 19th, 2022]
- Four Draws in Round Three of 2022 Candidates | US Chess.org - uschess.org - June 19th, 2022 [June 19th, 2022]
- Part 1: A Realistic Framing Of The Progress In Artificial Intelligence - Investing.com UK - June 19th, 2022 [June 19th, 2022]
- Who Will Win The Candidates: The Case For Each Player - Chess.com - June 13th, 2022 [June 13th, 2022]
- A tale of two universities and two engines - Chess News - March 22nd, 2022 [March 22nd, 2022]
- AlphaZero (And Other!) Chess Variants Now Available For Everyone - Chess.com - March 20th, 2022 [March 20th, 2022]
- How AI is impacting the video game industry - ZME Science - December 17th, 2021 [December 17th, 2021]
- Q&A: How Speechmatics is leading the way in tackling AI bias and improving inclusion - Information Age - November 4th, 2021 [November 4th, 2021]
- AlphaGo | DeepMind - October 22nd, 2021 [October 22nd, 2021]
- Leela Zero - Wikipedia - October 22nd, 2021 [October 22nd, 2021]
- Leela Chess Zero - Wikipedia - October 22nd, 2021 [October 22nd, 2021]
- How AI is reinventing what computers are - MIT Technology Review - October 22nd, 2021 [October 22nd, 2021]
- graphneural.network - Spektral - October 12th, 2021 [October 12th, 2021]
- MuZero - Wikipedia - October 12th, 2021 [October 12th, 2021]
- Bin Yu - October 12th, 2021 [October 12th, 2021]
- A general reinforcement learning algorithm that masters ... - August 29th, 2021 [August 29th, 2021]
- What would it be like to be a conscious AI? We might never know. - MIT Technology Review - August 29th, 2021 [August 29th, 2021]
- AlphaZero to analyse no-castling match of the champions - Chessbase News - July 13th, 2021 [July 13th, 2021]
- How This Startup Aims to Disrupt Copywriting Forever - Inc. - June 6th, 2021 [June 6th, 2021]
- Between Games and Apocalyptic Robots: Considering Near-Term Societal Risks of Reinforcement - Medium - April 17th, 2021 [April 17th, 2021]
- Trapping the queen - Chessbase News - April 17th, 2021 [April 17th, 2021]
- AI 101: All the Ways AI Could Improve or End Our World - Interesting Engineering - April 2nd, 2021 [April 2nd, 2021]
- Quick Scripts AlphaZero - February 17th, 2021 [February 17th, 2021]
- How to Kickstart an AI Venture Without Proprietary Data - Medium - February 17th, 2021 [February 17th, 2021]
- Street Fighter V: What to Expect After the Winter Update | CBR - CBR - Comic Book Resources - February 17th, 2021 [February 17th, 2021]
- This AI chess engine aims to help human players rather than defeat them - The Next Web - February 1st, 2021 [February 1st, 2021]
- Open source at Facebook: 700 repositories and 1.3 million followers - ZDNet - February 1st, 2021 [February 1st, 2021]
- Scientists say dropping acid can help with social anxiety and alcoholism - The Next Web - February 1st, 2021 [February 1st, 2021]
- AlphaZero - Chess Engines - Chess.com - November 21st, 2020 [November 21st, 2020]
- AlphaZero: Shedding new light on chess, shogi, and Go ... - November 21st, 2020 [November 21st, 2020]
- The art of chess: a brief history of the World Championship - TheArticle - November 21st, 2020 [November 21st, 2020]
- Podcast: Can you teach a machine to think? - MIT Technology Review - November 15th, 2020 [November 15th, 2020]
- Retired Chess Grandmaster, AlphaZero AI Reinvent Chess - Science Times - September 17th, 2020 [September 17th, 2020]
- DeepMind's AI is helping to re-write the rules of chess - ZDNet - September 17th, 2020 [September 17th, 2020]
- AI messed up mentally stimulating games. Right now it is actually creating the video game wonderful once again - Publicist Recorder - September 17th, 2020 [September 17th, 2020]
- A|I: The AI Times Surveillance mandated - BetaKit - September 17th, 2020 [September 17th, 2020]
- Starting on Friday: Chess 9LX with Carlsen and Kasparov - Chessbase News - September 17th, 2020 [September 17th, 2020]
- AlphaZero Match Will Be Replicated In Computer Chess Champs - Chess.com - August 3rd, 2020 [August 3rd, 2020]
- Facebook's New Algorithm Can Play Poker And Beat Humans At It - Digital Information World - August 3rd, 2020 [August 3rd, 2020]
- Survival of the Fattest: Macheide and Superman - TheArticle - August 3rd, 2020 [August 3rd, 2020]