Artificial Intelligence Applications: Is Your Business Implementing AI Smartly? – IoT For All

The book Design, Launch, and Scale IoT Servicesclassifies the components of IoT services into technical modules. One of the most important of these is Artificial Intelligence (AI). This article is intended to supplement the book by providing insight into AIand its applications for IoT.

After many years in the wilderness, AIis back on the hype curve and will change the world again. Or, will it? AIhas always been interesting, but what has changed to justify the current hype?

There are several contributing factors. The volumes of data that will be produced by many IoT services suggest that this data cannot be managed by humans with traditional analytics tools. Therefore, AIcan offer opportunities for IoT services to extract maximum value from the data. IoT cloud platforms are now offering AIservices via APIs and application development tools, making AI more accessible for many IoT services. Now, AIcan be incorporated without requiring extensive development or excessive costs.

AI can perform the Treble A actions automatically but there is a cost associated with every step in the lifecycle, therefore business owners should ask themselves why they should introduce AI. Understanding the end-goal is the starting point. Its not suitable for all services and requires evaluation to understand when and how it should be introduced.

The following questions can provide a useful starting point for evaluating the introduction of AI:

The majority of IoT services include (or claim to include) some aspect of AIin their solution. This is due to a wide diversity in AI definitions (supervised/unsupervised, reinforced/deep learning) and the hype surrounding AI. (Note: All IoT services should take advantage of this hype while it lasts.)

Lets look at the most common AI features and IoT industries to consider how IoT service owners can best evaluate AI and answer the questions above.

IoT cloud platform providers are offering powerful AIvisual recognition APIs. For example, developing a human visual recognition tool has now become a trivial exercise for developers, and the cost of using visual recognition in IoT services has reduced drastically. These tools are best used for use cases recognizing humans and objects, but may not be useful for very precise recognition use cases. Developing specific visual recognition capabilities proves too expensive for most services, but it does make the service more attractive for end-users.

Robotics is a branch of AIthat, for many, implies a 2-armed, 2-legged machine that communicateswith humans using visual or voice recognition. However, the most important use cases for IoT robotics involve the collection of data from sensors or extracted from robot programs. This data can be used by IoT services as input for AImachine learning algorithms to increase robot efficiency, implementing features such as predictive fault management or adaptive positioning. AIcan be used to increase productivity with robotic systems as part of Industrial IoT services that will become vital for many Industry 4.0 use cases.

Natural Language Processing (NLP) and voice recognition features have become widely available in mobile phones and CRM (customer relationship management) systems. They can be implemented via IoT cloud service APIs. This will be an option for many IoT services without requiring significant investment. It will make most services more attractive, implyingmore sales.However, we are probably quite far off from the stage where NLP is fundamental for IoT services. Its available on many mobile apps, but most users still prefer to use a touch screen. The main use cases for voice control systems will most likely involve voice to text transcription for operational or CRM activities to reduce cost but may increase frustration for end-users.(Note: Cloud providers are also introducing AIaudio recognition APIs for fault detection that can be used to replace or augment visual recognition features.)

Smart factories offer numerous opportunities for implementing use cases that can increase efficiency via visual inspection, checking for faulty components or assembly processes errors. The analysis required should include cost vs benefits. If visual inspection slows the production process, it may be counterproductive to introduce in a manufacturing processthat has a low fault rate.

For example, lets say that a smart factory is creating 5,000components per day averaging 50 faulty components. The introduction of a visual inspection may reduce the components to 0 faults. However, if it slows the manufacturing process to produce only 4,000components per day, is it worthwhile? The process owner will have to calculate if the reduction in throughput outweighs the benefits of a reduction in faulty components. This is an example of real-time fault detection that can used for industrial IoT services. (Note: Many of the IoT Cloud platform providers offer the possibility to implement AIon edge devices, thus increasing the number use cases for real-time AI.)

Many industrial IoT solutions suggest that visual recognition will be used to determine thecurrent health and emotional status of machine operators. This would require quite advanced featuresto be beneficial, and therefore,its unlikely to be relevant for most IoT services.

Visual inspection shows great promise in detecting cancer and other ailments using advanced AItechniques and is improving the accuracy of diagnosis in many IoT health use cases. Very often, visual inspection requires large volumes of sample cases and training sets to ensure that the performance is acceptable. Genome technology generates billions of data items mapping our DNA that cannot be handled by humans and analytics tools. The introduction of AIoffers the possibility to predict future health issues. Using data volumes of this magnitude requires unsupervised learning techniques, such as clustering. This may prove too complex and expensive for the majority of current IoT use cases. Again, cloud service providers provide options facilitating the management of training models and data with tools such as Google Cloud AutoML. However, its likely this will only be cost-effective for a limited number of IoT services.

Its surprising that we havent yet seen the widespread deployment of AIin the management of intelligent hospitals. As with any complex logistical processes, AIcan create significant efficiencies with relatively low investment.

Many smart home IoT services will implement voice recognition that connectswith smart speakers. These are widely available from providers such as Amazon, Google and Apple.They can communicate with most smart home devices without significant complexity. Its likely that voice recognition will be an add-on for the majority of IoT services; nice to have, but not fundamental. Therefore, in most cases, IoT business owners may have to budget for this as a premium service.

The potential of AI in transportation is very exciting (i.e. driverless cars.) There will be a lot of innovation with AIfor drivers, but new IoT service owners will have to carve out a niche in this market. Although the technology is available, we may still be quite a way off from many use cases being acceptable for drivers. Imagine all the cars on the road communicating with each other and learning from one another as they hit the road.

One example to consider: Car A detects ice on the road,informs other cars and they all proceed to automatically adjust speed and brakes based on performance data from the other cars. This may seem futuristic, but the technology is currently available and AI offers the possibility of increased performance and decision making.

Analytics is closely interlinked with AI. When utilizing AI, its typical to ask yourself if you need analytics tools or if analytics will die due to the implementation of AI. The answer? Not quite.Most IoT services employ analytics, and therefore the data required by AI will already be available. AIshould be able to replace a lot of the activities performed by humans using analytics tools. Or, the output of analytics can be the starting point of AIsintroduction in many IoT services. The latter doesnt imply analytics are a prerequisite. If the data is available, expert systems can be developed without analytics.

Now, were starting to see augmented analytics. This is where AI assists analytics with intelligent searching and other tasks. This may not be necessary for most IoT services, but we can be sure that its being used by the massive tech companies around the world. Unfortunately, most IoT services wont generate enough data to be cost-effective to introduce.

Analytics, statistics and lies are often interchangeable. These wont be solved by AI. One challenge for many IoT services is that neural networks and deep learning AI techniques cannot explain why theyre making decisions. This can reduce customer confidence and will be unsuitable for IoT services where a clear understanding of a decision-making process is important.

Original post:
Artificial Intelligence Applications: Is Your Business Implementing AI Smartly? - IoT For All

Related Posts

Comments are closed.