What is Artificial Intelligence (AI)? | Oracle

Despite AIs promise, many companies are not realizing the full potential of machine learning and other AI functions. Why? Ironically, it turns out that the issue is, in large part...people. Inefficient workflows can hold companies back from getting the full value of their AI implementations.

For example, data scientists can face challenges getting the resources and data they need to build machine learning models. They may have trouble collaborating with their teammates. And they have many different open source tools to manage, while application developers sometimes need to entirely recode models that data scientists develop before they can embed them into their applications.

With a growing list of open source AI tools, IT ends up spending more time supporting the data science teams by continuously updating their work environments. This issue is compounded by limited standardization across how data science teams like to work.

Finally, senior executives might not be able to visualize the full potential of their companys AI investments. Consequently, they dont lend enough sponsorship and resources to creating the collaborative and integrated ecosystem required for AI to be successful.

Originally posted here:
What is Artificial Intelligence (AI)? | Oracle

Related Posts

Comments are closed.