Biomonitoring and precision health in deep space supported by … – Nature.com
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183, 11621184 (2020).
Article Google Scholar
Loftus, D. J., Rask, J. C., McCrossin, C. G. & Tranfield, E. M. The chemical reactivity of lunar dust: from toxicity to astrobiology. Earth Moon Planets 107, 95105 (2010).
Article Google Scholar
Pohlen, M., Carroll, D., Prisk, G. K. & Sawyer, A. J. Overview of lunar dust toxicity risk. NPJ Microgravity 8, 55 (2022).
Article Google Scholar
Paul, A.-L. & Ferl, R. J. The biology of low atmospheric pressureimplications for exploration mission design and advanced life support. Gravit. Space Res. 19, 317 (2005).
Council, N. R. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (National Academies Press, 2011).
Goswami, N. et al. Maximizing information from space data resources: a case for expanding integration across research disciplines. Eur. J. Appl. Physiol. 113, 16451654 (2013).
Article Google Scholar
McGuire, K. et al. Using systems engineering to develop an integrated crew health and performance system to mitigate risk for human exploration missions. In Proc. 50th International Conference on Environmental Systems, 298, 111 (2021).
Antonsen, E., Hanson, A., Shah, R., Reed, R. D. & Canga, M. A. Conceptual drivers for an exploration medical system. In Proc. 67th International Astronautical Congress 110 (NASA Technical Reports Server, 2016).
Zhao, K. & Zhang, Q. Network protocol architectures for future deep-space internetworking. Sci. China Inf. Sci. 61, 040303 (2018).
Article MathSciNet Google Scholar
Beaton, K. H. et al. Extravehicular activity operations concepts under communication latency and bandwidth constraints. In Proc. 2017 IEEE Aerospace Conference 120 (IEEE, 2017)
Ball, J. R. & Evans, C. H. Jr. Safe Passage: Astronaut Care for Exploration Missions (National Academies Press, 2014).
Google Scholar
Antonsen, E. L. et al. Estimating medical risk in human spaceflight. NPJ Microgravity 8, 8 (2022).
Article Google Scholar
McNulty, M. J. et al. Evaluating the cost of pharmaceutical purification for a long-duration space exploration medical foundry. Front. Microbiol. 12, 700863 (2021).
Article Google Scholar
Blue, R. S. et al. Challenges in clinical management of radiation-induced illnesses during exploration spaceflight. Aerosp. Med. Hum. Perform. 90, 966977 (2019).
Article Google Scholar
Chancellor, J. C. et al. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018).
Article Google Scholar
Patel, Z. S. et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity 6, 33 (2020).
Article Google Scholar
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives and prospects. Science 349, 255260 (2015).
Article MathSciNet MATH Google Scholar
Costes, S. V., Sanders, L. M. & Scott, R. T. Workshop on Artificial Intelligence & Modeling for Space Biology https://zenodo.org/record/7508535#.Y9LwQITP23A (2023).
Hood, L. & Flores, M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N. Biotechnol. 29, 613624 (2012).
Article Google Scholar
Zitnik, M. et al. Machine learning for integrating data in biology and medicine: principles, practice and opportunities. Inf. Fusion 50, 7191 (2019).
Article Google Scholar
Sanders, L. M. et al. Biological research and self-driving labs in deep space supported by artificial intelligence. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00618-4 (2023).
Kahn, J., Liverman, C. T. & McCoy, M. A. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities and Decision Framework (National Academies Press, 2014).
Schmidt, M. A., Schmidt, C. M., Hubbard, R. M. & Mason, C. E. Why personalized medicine is the frontier of medicine and performance for humans in space. New Space 8, 6376 (2020).
Article Google Scholar
National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies Press, 2012).
Park, S.-M., Ge, T. J., Won, D. D., Lee, J. K. & Liao, J. C. Digital biomarkers in human excreta. Nat. Rev. Gastroenterol. Hepatol. 18, 521522 (2021).
Article Google Scholar
Gambhir, S. S., Ge, T. J., Vermesh, O. & Spitler, R. Toward achieving precision health. Sci. Transl. Med. 10, eaao3612 (2018).
Article Google Scholar
Gambhir, S. S., Ge, T. J., Vermesh, O., Spitler, R. & Gold, G. E. Continuous health monitoring: an opportunity for precision health. Sci. Transl. Med. 13, eabe5383 (2021).
Article Google Scholar
Antonsen, E. L. & Reed, R. D. Policy considerations for precision medicine in human spaceflight. Hous. J. Health L. Policy 19, 137 (2020).
Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609611 (2015).
Article Google Scholar
Arges, K. et al. The Project Baseline Health Study: a step towards a broader mission to map human health. NPJ Digit. Med. 3, 84 (2020).
Article Google Scholar
Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 12931307 (2012).
Article Google Scholar
Li, X. et al. Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 15, e2001402 (2017).
Article Google Scholar
Zhou, W. et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569, 663671 (2019).
Article Google Scholar
Mias, G. I. et al. Longitudinal saliva omics responses to immune perturbation: a case study. Sci. Rep. 11, 710 (2021).
Article Google Scholar
Haney, N. M., Urman, A., Waseem, T., Cagle, Y. & Morey, J. M. AIs role in deep space. J. Med. Artif. Intell. 3, 11 (2020).
Article Google Scholar
Yu, K.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719731 (2018).
Article Google Scholar
Topol, E. J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 4456 (2019).
Article Google Scholar
Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
Article Google Scholar
Thompson, D. E. Space TechnologyGame Changing Development NASA Facts: Autonomous Medical Operations. NASA Technology Reports Server (NASA, 2018).
Walton, M. E. & Kerstman, E. L. Quantification of medical risk on the International Space Station using the Integrated Medical Model. Aerosp. Med. Hum. Perform. 91, 332342 (2020).
Article Google Scholar
Sipes, W., Holland, A. & Beven, G. in Handbook of Bioastronautics (eds Young, L. R. & Sutton, J. P.) 425436 (Springer, 2021).
McGregor, C. A platform for real-time space health analytics as a service utilizing space data relays. In Proc. 2021 IEEE Aerospace Conference (50100) 114 (IEEE, 2021).
McGregor, C. A platform for real-time online health analytics during spaceflight. In Proc. 2013 IEEE Aerospace Conference 18 (IEEE, 2013).
Mindock, J. et al. Systems engineering for space exploration medical capabilities. In Proc. AIAA SPACE and Astronautics Forum and Exposition 139, 306312 (American Institute of Aeronautics and Astronautics, 2017).
Schneider, W. F. et al. NASA environmental control and life support technology development and maturation for exploration: 2019 to 2020 overview. In Proc. International Conference on Environmental Systems 200, 112 (2021).
Broyan, J. L., Shaw, L., Mc Kinley, M., Meyer, C. & Ewert, M. K. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview. In Proc. 50th International Conference on Environmental Systems 384, 112 (NASA, 2021).
Williams-Byrd, J. A. et al. Implementing NASAs capability-driven approach: insight into NASAs processes for maturing exploration systems. In AIAA SPACE 2015 Conference and Exposition (American Institute of Aeronautics and Astronautics, 2015).
Goel, N. & Dinges, D. F. Predicting risk in space: genetic markers for differential vulnerability to sleep restriction. Acta Astronaut. 77, 207213 (2012).
Article Google Scholar
Limkakeng, A. T. Jr. et al. Systematic molecular phenotyping: a path toward precision emergency medicine? Acad. Emerg. Med. 23, 10971106 (2016).
Article Google Scholar
Clment, G. R. et al. Challenges to the central nervous system during human spaceflight missions to Mars. J. Neurophysiol. 123, 20372063 (2020).
Article Google Scholar
Fitzgerald, J. et al. Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer. J. Clin. Pathol. 74, 429434 (2021).
Article Google Scholar
Weiss, J., Hoffmann, U. & Aerts, H. J. W. L. Artificial intelligence-derived imaging biomarkers to improve population health. Lancet Digit. Health 2, e154e155 (2020).
Article Google Scholar
Strangman, G. E. et al. Deep-space applications for point-of-care technologies. Curr. Opin. Biomed. Eng. 11, 4550 (2019).
Article Google Scholar
Budd, S. et al. Prototyping CRISP: a Causal Relation and Inference Search Platform applied to colorectal cancer data. In Proc. IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech) 517521 (IEEE, 2021).
Schmidt, M. A. & Goodwin, T. J. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 9, 11341156 (2013).
Article Google Scholar
Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345361 (2021).
Article Google Scholar
Tissue Chips in Space https://ncats.nih.gov/tissuechip/projects/space (NIH, 2016).
Yeung, C. K. et al. Tissue chips in spacechallenges and opportunities. Clin. Transl. Sci. 13, 810 (2020).
Article Google Scholar
Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 3545 (2018).
Article Google Scholar
Gertz, M. L. et al. Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep. 33, 108429 (2020).
Continue reading here:
Biomonitoring and precision health in deep space supported by ... - Nature.com