Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics – EurekAlert
The book Artificial Intelligence Based Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics gives a comprehensive explanation of the role of machine learning and artificial intelligence in cancer nanomedicine. It presents 10 chapters that cover multiple dimensions of the subject. These dimensions are:
- The need of AI and ML in designing new cancer drugs
- Application of AI in cancer drug design
- AI-based drug delivery models for cancer drugs
- Diagnostic applications of AI
- Intelligent nanosensors for biomarker profiling
- Predictive models for metastatic cancer
- Cancer nanotheranostics
- Ethics of AI in medicine
The book serves as a reference for scholars learning about cancer diagnostics and therapeutics. Biomedical engineers who are involved in healthcare projects will also find the concepts and techniques highlighted in the book informative for understanding modern computer-based approaches used to solve clinical problems.
To overcome this challenge application of artificial intelligence (AI) along with nanomedicine can serve as a helping tool for optimizing the drug and dose parameters. Conversion between these two fields enables up gradation of patient data acquisition, improved design of nanomaterials. In cancer the high intratumor and interpatient heterogeneity behavior is quite difficult to plan for a rational therapeutic design and further to analyse their output is extremely difficult. In this scenario application and integration of AI based approaches such as pattern analysis and algorithms models can bridge the gap, for improved accuracy of diagnostics and therapeutics. With the help of AI algorithms large datasets can be processed, complex patterns can be exploited for improvement of nanotechnology based design for cancer diagnostics and treatments. Application of precision cancer nanomedicine is highly essential as every patient is unique. Patient groups have varied differences, such as age, gender, height, eye color, blood type as well as unique molecular signatures, which leads to different phenotypic changes and wide-ranging of drug responses amongst patients. Further, patients vary substantially with regard to the dosages needed to attain drug synergy, and desirable degree of drug exposure to reach optimal treatment outcomes. Optimization of dosing in oncology highly essential, often dose reductions are implemented to manage treatment-related toxicity and it faces key challenges while translating it to a clinical practice for dosing establishment. This type of challenges can be addresses via recent advances in AI.
In this regard, AI plays a critical role in reconciling this space into an actionable treatment response.
In the era of computer aided technology, almost all field are involved with information technology. AI is the amalgamation of computer ethics and bioethics. During application all aspects of research technology pertaining to the their field needs to be ethics free so that they can be freely used for human welfare. These AI enabled novel technologies based therapy needs to be followed at all levels the ethical principles like human privacy, dignity, justice, morality and fair access to the knowledge for possible beneficial of therapy. The book entitled Artificial Intelligence Based Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics. by Dr. Fahima Dilnawaz and Dr. Ajit Kumar Behura exemplifies various modes of the application of AI towards cancer nanomedicine and its related aspects of bioethics. This book indeed is a modest effort to the several approaches of cancer nanomedicine having a broad readership that includes researchers, scholars, academicians, clinicians and their allied partners. The authors have made intensive efforts by inviting various reputed contributors to contribute their views.
About the Editors:
Dr. Fahima Dilnawaz is a Women Scientist at the Department of Science and Technology, in the laboratory of nanomedicine of the Institute of Life Sciences, Bhubaneswor, Odisha, India. She received a doctorate in botany from the Mal University, on M.Phil from Berhampur University, on ITC fellowship from the Hungarian Academy of Sciences, and o post-doctoral fellowship horn the Department of Biotechnology. Being a dynamic researcher, she hos on h.index of 17, her more than 30 scientific papers, review articles, 17 book chapter in reputed journals os well as publishing house have fetched citations of around 2413. Her expertise hos been much admired for which she was invited to deliver sessions in various scientific gatherings in India as well as abroad. She has co-authored the book "Remedial Biology' and co-edited book Nanomedicine Approaches towards Cardiovascular Disease'. To her credit, she has coauthored two patents, which hove acclaimed approval from the USA, Europe, Australian and another one from Indio. The patented technology was commercialized for "magnetic cell separation kit (Quicksort TM)'. She is serving as a reviewer for various Nano medicinal journals, as well as on associated editorial board member.
The author, Dr. Ajit Kumar Behura, is a senior faculty working in the Department of Humanities and Social Sciences, Indian Institute of Technology, Dhanbad-826004. He has earned his doctorate in philosophy from the Central University of Hyderabad. His main areas of teaching and research interests are applied ethics, environmental ethics, and ethics in scientific and technological research, engineering ethics, sustainable development and Indian philosophy. Under his guidance, 9 Ph.D. students were supervised in different areas of ethics and philosophy. He has 39 research publications in index journals. There are a number of training programs, consultancy and projects to his credit. He is a life member of several professional bodies.
Keywords:
Artificial intelligence, Nanomedicine, Nanotechnology, Target site, Cancer nanomedicine, Deep learning, Drug discovery, Machine learning, Robotics.
Please visit for more information: https://bit.ly/3zcQ6mN
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
Originally posted here:
Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics - EurekAlert