Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution … – Nature.com
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444456 (2001).
Article CAS PubMed Google Scholar
Verkman, A. S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27, 2733 (2002).
Article CAS PubMed Google Scholar
Mach, R. & Wohland, T. Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett. 588, 35713584 (2014).
Article PubMed Google Scholar
Lippincott-Schwartz, J., Snapp, E. L. & Phair, R. D. The development and enhancement of FRAP as a key tool for investigating protein dynamics. Biophys. J. 115, 11461155 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 40294042 (2005).
Article CAS PubMed PubMed Central Google Scholar
Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 8389 (2006).
Article CAS PubMed Google Scholar
Elson, E. L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 28552870 (2011).
Article CAS PubMed PubMed Central Google Scholar
Krieger, J. W. et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10, 19481974 (2015).
Article CAS PubMed Google Scholar
Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155157 (2008).
Article CAS PubMed Google Scholar
Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281289 (2014).
Article CAS PubMed PubMed Central Google Scholar
Cognet, L., Leduc, C. & Lounis, B. Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr. Opin. Chem. Biol. 20, 7885 (2014).
Article CAS PubMed Google Scholar
Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).
Article PubMed Google Scholar
Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 73317376 (2017).
Article CAS PubMed Google Scholar
Beheiry, M. E., Dahan, M. & Masson, J.-B. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12, 594595 (2015).
Article PubMed Google Scholar
Xiang, L., Chen, K., Yan, R., Li, W. & Xu, K. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nat. Methods 17, 524530 (2020).
Article CAS PubMed PubMed Central Google Scholar
Yan, R., Chen, K. & Xu, K. Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy. J. Am. Chem. Soc. 142, 1886618873 (2020).
Article CAS PubMed PubMed Central Google Scholar
Xiang, L., Chen, K. & Xu, K. Single molecules are your Quanta: a bottom-up approach toward multidimensional super-resolution microscopy. ACS Nano 15, 1248312496 (2021).
Article CAS PubMed PubMed Central Google Scholar
Schuster, J., Cichos, F. & von Borczyskowski, C. Diffusion measurements by single-molecule spot-size analysis. J. Phys. Chem. A 106, 54035406 (2002).
Article CAS Google Scholar
Zareh, S. K., DeSantis, M. C., Kessler, J. M., Li, J.-L. & Wang, Y. M. Single-image diffusion coefficient measurements of proteins in free solution. Biophys. J. 102, 16851691 (2012).
Article CAS PubMed PubMed Central Google Scholar
Serag, M. F., Abadi, M. & Habuchi, S. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations. Nat. Commun. 5, 5123 (2014).
Article CAS PubMed Google Scholar
Mckl, L., Roy, A. R. & Moerner, W. E. Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomed. Opt. Express 11, 16331661 (2020).
Article PubMed PubMed Central Google Scholar
Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458464 (2018).
Article CAS Google Scholar
Zhang, P. et al. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods 15, 913916 (2018).
Article CAS PubMed PubMed Central Google Scholar
Zelger, P. et al. Three-dimensional localization microscopy using deep learning. Opt. Express 26, 3316633179 (2018).
Article CAS PubMed Google Scholar
Kim, T., Moon, S. & Xu, K. Information-rich localization microscopy through machine learning. Nat. Commun. 10, 1996 (2019).
Article PubMed PubMed Central Google Scholar
Hershko, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 27, 61586183 (2019).
Article CAS PubMed Google Scholar
Mckl, L., Petrov, P. N. & Moerner, W. E. Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. Appl. Phys. Lett. 115, 251106 (2019).
Article PubMed PubMed Central Google Scholar
Zhang, Z., Zhang, Y., Ying, L., Sun, C. & Zhang, H. F. Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy. Opt. Lett. 44, 58645867 (2019).
Article CAS PubMed PubMed Central Google Scholar
Gaire, S. K. et al. Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomed. Opt. Express 11, 27052721 (2020).
Article CAS Google Scholar
Mckl, L., Roy, A. R., Petrov, P. N. & Moerner, W. E. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proc. Natl Acad. Sci. 117, 6067 (2020).
Article PubMed Google Scholar
Nehme, E. et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 17, 734740 (2020).
Article CAS PubMed PubMed Central Google Scholar
Speiser, A. et al. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods 18, 10821090 (2021).
Article CAS PubMed PubMed Central Google Scholar
Cascarano, P. et al. DeepCEL0 for 2D single-molecule localization in fluorescence microscopy. Bioinformatics 38, 14111419 (2022).
Article CAS PubMed Google Scholar
Spilger, R. et al. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Vol. 11045 (eds. Stoyanov, D. et al.) 128136 (Springer International Publishing, 2018).
Newby, J. M., Schaefer, A. M., Lee, P. T., Forest, M. G. & Lai, S. K. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proc. Natl Acad. Sci. USA 115, 90269031 (2018).
Article CAS PubMed PubMed Central Google Scholar
Muoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).
Article PubMed PubMed Central Google Scholar
Kowalek, P., Loch-Olszewska, H. & Szwabiski, J. Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach. Phys. Rev. E 100, 032410 (2019).
Article CAS PubMed Google Scholar
Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185192 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pinholt, H. D., Bohr, S. S.-R., Iversen, J. F., Boomsma, W. & Hatzakis, N. S. Single-particle diffusional fingerprinting: a machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc. Natl Acad. Sci. 118, e2104624118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pineda, J. et al. Geometric deep learning reveals the spatiotemporal features of microscopic motion. Nat. Mach. Intell. 5, 7182 (2023).
Article Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770778 (IEEE, 2016).
Ioffe, S. & Szegedy, C. in Proceedings of the 32nd International Conference on Machine Learning 448456 (PMLR, 2015).
Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv https://doi.org/10.48550/arXiv.1710.05941 (2017).
Nair, V. & Hinton, G. E. in Proc. 27th International Conference on International Conference on Machine Learning 807814 (Omnipress, 2010).
Choi, A. A. et al. Displacement statistics of unhindered single molecules show no enhanced diffusion in enzymatic reactions. J. Am. Chem. Soc. 144, 48394844 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. arXiv https://doi.org/10.48550/arXiv.1703.06907 (2017).
Filippov, A., Ordd, G. & Lindblom, G. Sphingomyelin structure influences the lateral diffusion and Raft formation in lipid Bilayers. Biophys. J. 90, 20862092 (2006).
Article CAS PubMed Google Scholar
Mach, R. & Hof, M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta BBA Biomembr. 1798, 13771391 (2010).
Article Google Scholar
Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 1891118916 (2006).
Article CAS PubMed PubMed Central Google Scholar
Maekawa, T. et al. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers. Phys. Chem. Chem. Phys. 21, 1668616693 (2019).
Article CAS PubMed Google Scholar
Kuo, C. & Hochstrasser, R. M. Super-resolution microscopy of lipid bilayer phases. J. Am. Chem. Soc. 133, 46644667 (2011).
Article CAS PubMed PubMed Central Google Scholar
Yan, R., Wang, B. & Xu, K. Functional super-resolution microscopy of the cell. Curr. Opin. Chem. Biol. 51, 9297 (2019).
Article CAS PubMed Google Scholar
Continued here:
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution ... - Nature.com