Archive for the ‘Machine Learning’ Category

Machine Learning | IBM

Machine-learning techniques are required to improve the accuracy of predictive models. Depending on the nature of the business problem being addressed, there are different approaches based on the type and volume of the data. In this section, we discuss the categories of machine learning.

Supervised learning

Supervised learning typically begins with an established set of data and a certain understanding of how that data is classified. Supervised learning is intended to find patterns in data that can be applied to an analytics process. This data has labeled features that define the meaning of data. For example, you can create a machine-learning application that distinguishes between millions of animals, based onimages and written descriptions.

Unsupervised learning

Unsupervised learning is used when the problem requires a massive amount of unlabeled data. For example, social media applications, such as Twitter, Instagram and Snapchat, all have large amounts of unlabeled data. Understanding the meaning behind this data requires algorithms that classify the data based on the patterns or clusters it finds.

Unsupervised learning conducts an iterative process, analyzing data without human intervention. It is used with email spam-detecting technology. There are far too many variables in legitimate and spam emails for an analyst to tag unsolicited bulk email. Instead, machine-learning classifiers, based on clustering and association, are applied to identify unwanted email.

Reinforcement learning

Reinforcement learning is a behavioral learning model. The algorithm receives feedback from the data analysis, guiding the user to the best outcome. Reinforcement learning differs from other types of supervised learning, because the system isnt trained with the sample data set. Rather, the system learns through trial and error. Therefore, a sequence of successful decisions will result in the process being reinforced, because it best solves the problem at hand.

Deep learning

Deep learning is a specific method of machine learning that incorporates neural networks in successive layers to learn from data in an iterative manner. Deep learning is especially useful when youre trying to learn patterns from unstructured data.

Deep learning complex neural networks are designed to emulate how the human brain works, so computers can be trained to deal with poorly defined abstractions and problems. The average five-year-old child can easily recognize the difference between his teachers face and the face of the crossing guard. In contrast, the computer must do a lot of work to figure out who is who. Neural networks and deep learning are often used in image recognition, speech, and computer vision applications.

Continued here:
Machine Learning | IBM

JPMorgan’s head of machine learning explained what it’s like to work there – eFinancialCareers

For the past few years, JPMorgan has been busy building out its machine learning capability underDaryush Laqab, its San Francisco-based head of AI/machine learning products, who was hired from Google in 2019. Last time we looked, the bank seemed to be paying salaries of $160-$170k to new joiners onLaqab's team.

If that sounds appealing, you might want to watch the video below so that you know what you're getting into. Recorded at the AWS re:Invent conferencein December, it's only just made it to you YouTube. The video is flagged as a day in the life of JPMorgan's machine learning data scientists, butLaqab arguably does a better of job of highlighting some of the constraints data professionals at allbanks have to work under.

"There are some barriers to smooth data science at JPMorgan," he explains - a bank is not the same as a large technology firm.

For example, data scientists at JPMorgan have to check data is authorized for use, saysLaqab: "They need to go to a process to log that use and make surethat they have the adequate approvals for that intent in terms of use."

They also have to deal with the legacy infrastructureissue: "We are a large organization, we have a lot of legacy infrastructure," says Laqab. "Like any other legacy infrastructure, it is built over time,it is patched over time. These are tightly integrated,so moving part or all of that infrastructure to public cloud,replacing rule base engines with AI/ML based engines.All of that takes time and brings inertia to the innovation."

JPMorgan's size and complexity is another source of inertia as multiple business lines in multiple regulated entities in different regulated environments need to be considered. "Making sure that those regulatory obligationsare taken care of, again, slows down data science at times," saysLaqab.

And then there are more specific regulations such as those concerning model governance. At JPMorgan, a machine learning model can't go straight into a production environment."It needs to go through a model review and a model governance process," says Laqab. "- To make sure we have another set of eyes that looksat how that model was created, how that model was developed..." And then there are software governance issues too.

Despite all these hindrances, JPMorgan has already productionized AI models and built an 'Omni AI ecosystem' to help employees to identify and ingest minimum viable data so that they canbuild models faster. Laqab saysthe bank saved $150m in expenses in 2019 as a result. JPMorgan's AI researchers are now working on everything fromFAQ bots and chat bots, to NLP search models for the bank'sown content, pattern recognition in equities markets and email processing. - The breadth of work on offer is considerable. "We play in every market that is out there," saysLaqab,

The bank has also learned that the best way to structure its AI team is to split people into data scientists who train and create models and machine learning engineers who operationalize models, saysLaqab. - Before you apply, you might want to consider which you'd rather be.

Photo by NeONBRAND on Unsplash

Have a confidential story, tip, or comment youd like to share? Contact:sbutcher@efinancialcareers.comin the first instance. Whatsapp/Signal/Telegram also available. Bear with us if you leave a comment at the bottom of this article: all our comments are moderated by human beings. Sometimes these humans might be asleep, or away from their desks, so it may take a while for your comment to appear. Eventually it will unless its offensive or libelous (in which case it wont.)

Read more from the original source:
JPMorgan's head of machine learning explained what it's like to work there - eFinancialCareers

5 Ways the IoT and Machine Learning Improve Operations – BOSS Magazine

Reading Time: 4 minutes

By Emily Newton

The Internet of Things (IoT) and machine learning are two of the most disruptive technologies in business today. Separately, both of these innovations can bring remarkable benefits to any company. Together, they can transform your business entirely.

The intersection of IoT devices and machine learning is a natural progression. Machine learning needs large pools of relevant data to work at its best, and the IoT can supply it. As adoption of both soars, companies should start using them in conjunction.

Here are five ways the IoT and machine learning can improve operations in any business.

Around 25% of businesses today use IoT devices, and this figure will keep climbing. As companies implement more of these sensors, they add places where they can gather data. Machine learning algorithms can then analyze this data to find inefficiencies in the workplace.

Looking at various workplace data, a machine learning program could see where a company spends an unusually high amount of time. It could then suggest a new workflow that would reduce the effort employees expend in that area. Business leaders may not have ever realized this was a problem area without machine learning.

Machine learning programs are skilled at making connections between data points that humans may miss. They can also make predictions 20 times earlier than traditional tools and do so with more accuracy. With IoT devices feeding them more data, theyll only become faster and more accurate.

Machine learning and the IoT can also automate routine tasks. Business process automation (BPA) leverages AI to handle a range of administrative tasks, so workers dont have to. As IoT devices feed more data into these programs, they become even more effective.

Over time, technology like this has contributed to a 40% productivity increase in some industries. Automating and streamlining tasks like scheduling and record-keeping frees employees to focus on other, value-adding work. BPAs potential doesnt stop there, either.

BPA can automate more than straightforward data manipulation tasks. It can talk to customers, plan and schedule events, run marketing campaigns and more. With more comprehensive IoT implementation, it would have access to more areas, becoming even more versatile.

One of the most promising areas for IoT implementation is in the supply chain. IoT sensors in vehicles or shipping containers can provide companies with critical information like real-time location data or product quality. This data alone improves supply chain visibility, but paired with machine learning, it could transform your business.

Machine learning programs can take this real-time data from IoT sensors and put it into action. It could predict possible disruptions and warn workers so they can respond accordingly. These predictive analytics could save companies the all-too-familiar headache of supply chain delays.

UPS Orion tool is the gold standard for what machine learning can do for supply chains. The system has saved the shipping giant 10 million gallons of fuel a year by adjusting routes on the fly based on traffic and weather data.

If a company cant understand the vulnerabilities it faces, business leaders cant make fully informed decisions. IoT devices can provide the data businesses need to get a better understanding of these risks. Machine learning can take it a step further and find points of concern in this data that humans could miss.

IoT devices can gather data about the workplace or customers that machine learning programs then process. For example, Progressive has made more than 1.7 trillion observations about its customers driving habits through Snapshot, an IoT tracking device. These analytics help the company adjust clients insurance rates based on the dangers their driving presents.

Business risks arent the only hazards the Internet of Things and machine learning can predict. IoT air quality sensors could alert businesses when to change HVAC filters to protect employee health. Similarly, machine learning cybersecurity programs could sense when hackers are trying to infiltrate a companys network.

Another way the IoT and machine learning could transform your business is by eliminating waste. Data from IoT sensors can reveal where the company could be using more resources than it needs. Machine learning algorithms can then analyze this data to suggest ways to improve.

One of the most common culprits of waste in businesses is energy. Thanks to various inefficiencies, 68% of power in America ends up wasted. IoT sensors can measure where this waste is happening, and with machine learning, adjust to stop it.

Machine learning algorithms in conjunction with IoT devices could restrict energy use, so processes only use what they need. Alternatively, they could suggest new workflows or procedures that would be less wasteful. While many of these steps may seem small, they add up to substantial savings.

Without the IoT and machine learning, businesses cant reach their full potential. These technologies enable savings companies couldnt achieve otherwise. As they advance, theyll only become more effective.

The Internet of Things and machine learning are reshaping the business world. Those that dont take advantage of them now could soon fall behind.

Emily Newton is the Editor-in-Chief of Revolutionized, a magazine exploring how innovations change our world. She has over 3 years experience writing articles in the industrial and tech sectors.

Go here to read the rest:
5 Ways the IoT and Machine Learning Improve Operations - BOSS Magazine

Parascript and SFORCE Partner to Leverage Machine Learning Eliminating Barriers to Automation – GlobeNewswire

Longmont, CO, Feb. 09, 2021 (GLOBE NEWSWIRE) -- Parascript, which provides document analysis software processing for over 100 billion documents each year, announced today the Smart-Force (SFORCE) and Parascript partnership to provide a digital workforce that augments operations by combining cognitive Robotic Process Automation (RPA) technology with customers current investments for high scalability, improved accuracy and an enhanced customer experience in Mexico and across Latin America.

Partnering with Smart-Force means we get to help solve some of the greatest digital transformation challenges in Intelligent Document Processing instead of just the low-hanging fruit. Smart-Force is forward-thinking and committed to futureproofing their customers processes, even with hard-to-automate, unstructured documents where the application of techniques such as NLP is often required, said Greg Council, Vice President of Marketing and Product Management at Parascript. Smart-Force leverages bots to genuinely collaborate with staff so that the staff no longer have to spend all their time on finding information, and performing data entry and verification, even for the most complex multi-page documents that you see in lending and insurance.

Smart-Force specializes in digital transformation by identifying processes in need of automation and implementing RPA to improve those processes so that they run faster without errors. SFORCE routinely enables increased productivity, improves customer satisfaction, and improves staff morale through leveraging the technology of Automation Anywhere, Inc., a leader in RPA, and now Parascript Intelligent Document Processing.

As intelligent automation technology becomes more ubiquitous, it has created opportunities for organizations to ignite their staff towards new ways of working freeing up time from the manual tasks to focus on creative, strategic projects, what humans are meant to do, said Griffin Pickard, Director of Technology Alliance Program at Automation Anywhere. By creating an alliance with Parascript and Smart-Force, we have enabled customers to advance their automation strategy by leveraging ML and accelerate end-to-end business processes.

Our focus at SFORCE is on RPA with Machine Learning to transform how customers are doing things. We dont replace; we compliment the technology investments of our customers to improve how they are working, said Alejandro Castrejn, Founder of SFORCE. We make processes faster, more efficient and augment their staff capabilities. In terms of RPA processes that focus on complex document-based information, we havent seen anything approach what Parascript can do.

We found that Parascript does a lot more than other IDP providers. Our customers need a point-to-point RPA solution. Where Parascript software becomes essential is in extracting and verifying data from complex documents such as legal contracts. Manual data entry and review produces a lot of errors and takes time, said Barbara Mair, Partner at SFORCE. Using Parascript software, we can significantly accelerate contract execution, customer onboarding and many other processes without introducing errors.

The ability to process simple to very complex documents such as unstructured contracts and policies within RPA leveraging FormXtra.AI represents real opportunities for digital transformation across the enterprise. FormXtra.AI and its Smart Learning allow for easy configuration, and by training the systems on client-specific data, the automation is rapidly deployed with the ability to adapt to new information introduced in dynamic production environments.

About SFORCE, S.A. de C.V.

SFORCE offers services that allow customers to adopt digital transformation at whatever pace the organization needs. SFORCE is dedicated to helping customers get the most out of their existing investments in technology. SFORCE provides point-to-point solutions that combine existing technologies with next generation technology, which allows customers to transform operations, dramatically increase efficiency as well as automate manual tasks that are rote and error-prone, so that staff can focus on high-value activities that significantly increase revenue. From exploring process automation to planning a disruptive change that ensures high levels of automation, our team of specialists helps design and implement the automation of processes for digital transformation. Visit SFORCE.

About Parascript

Parascript software, driven by data science and powered by machine learning, configures and optimizes itself to automate simple and complex document-oriented tasks such as document classification, document separation and data entry for payments, lending and AP/AR processes. Every year, over 100 billion documents involved in banking, insurance, and government are processed by Parascript software. Parascript offers its technology both as software products and as software-enabled services to our partners. Visit Parascript.

Read this article:
Parascript and SFORCE Partner to Leverage Machine Learning Eliminating Barriers to Automation - GlobeNewswire

How APIs Breathe Life Into Machine Learning Organisations – Analytics India Magazine

API monetisation and API first strategies have become a new normal with businesses with digital maturity.

Last years pandemic catalysed digital maturity across organisations. The niche markets found even more niche business opportunities, thanks to the widespread adoption and development of APIs (Application Programming Interface). In their most basic form, APIs are doorways between two software applications and become extremely powerful when tailored to the needs of the developers. Web, mobile and automation are some of the key applications powered by APIs. According to a report by Google Cloud, API programs are the core drivers of digital transformation by playing a significant role in digital experiences, business operations, innovation, and growth.

Companies around the world possess valuable data ready to be capitalised. All they need are the services that can bridge the gap between customers and third parties. APIs fit right into this mix. For instance, the banking sector has witnessed a tremendous revolution with the advent of fintech products. The infrastructure behind the payment gateways are powered by the APIs like those of Stripe or Razorpay. These fintech API providers are multi-billion dollar companies today. Machine learning-based API service providers are next in line to take the markets by storm.

Databricks API supports services to manage clusters, instance pools, libraries, tokens, and MLflow models. Databricks is currently valued at $28 billion.

For example, last week, Databricks, a company that offers unified platform services raised $1 billion that rocketed its market value to $28 billion. Though AWS too offers Spark services, Databricks Spark services seem to have an edge over them. They offer additional customisations while combining the synergies of top players to serve an user.

According to an Apigee survey, AI- and ML-powered API security and monitoring solutions used for anomaly detection and security analytics grew 230% year-over-year between September 2019 and September 2020.

When easily reusable, APIs let developers modularly combine, and recombine functionality and data for new uses, with virtually no marginal cost for each additional use of the API. If one developer builds a new application by leveraging an API that looks up store locations, another developer can leverage the same API for another application without the enterprise incurring any additional overhead.

The APIs will (source: Gartner):

APIs also allow the organisations to take smart decisions by providing details of the product consumption at the user level, which in turn can be used by the developers to enhance the end product. This sounds like every other business strategy, but APIs make it more accessible. It helps them understand the value of an organisations digital assets. Beyond helping enterprises, writes Bala Kasiviswanathan of Google Cloud, API analytics can help both IT and business leaders refine the KPIs they use for analytics. If an API becomes popular with developers in a new vertical for example, that may persuade the enterprise to focus on KPIs like adoption among these specific developers, rather than on overall adoption, said Bala.

In 2019, machine learning as a service (MLaaS) raked in an estimated $1 billion and is expected to grow to $8.4 billion by the end of 2025. The success of these services can be traced to the customised APIs. For example, Googles prediction API, can be used to classify an image for $0.0015 and even perform sentiment analysis on text for just $0.00025 only. The user gets to avail Googles state-of-the-art tech and Google gets compensated for its research. APIs can act as conduit between innovation and incentives.

No matter what kind of machine learning product you are building, it eventually boils down to whether the customer can deploy these models with just a few clicks. APIs help do this. Research labs like OpenAI resorted to releasing APIs to commercialise their exotic research. The much talked about language model, GPT-3 was tapped through these APIs and was leveraged to set up many million dollar startups. Now, customers can access state-of-the-art ML models without the headaches of training from scratch; GPT-3 training that cost OpenAI over $4 million.

If you are an API service provider, then here are a few takeaways from OpenAIs success:

Also Read: This Framework Leads to 50% Cost Reduction From ML API Calls

Going forward, more Cloud and AI based services will be offered as API-centric services. Services like AWS Lambda are designed for producing exclusively API/event-centric application services. According to Gartner, adoption of API-centric models for SaaS delivery is expected to increase and the API economy has already established itself as a precursor of digital transformations and the primary way to grow an ecosystem.

Read more:
How APIs Breathe Life Into Machine Learning Organisations - Analytics India Magazine