Archive for the ‘Machine Learning’ Category

The 12 Coolest Machine-Learning Startups Of 2020 – CRN

Learning Curve

Artificial intelligence has been a hot technology area in recent years and machine learning, a subset of AI, is one of the most important segments of the whole AI arena.

Machine learning is the development of intelligent algorithms and statistical models that improve software through experience without the need to explicitly code those improvements. A predictive analysis application, for example, can become more accurate over time through the use of machine learning.

But machine learning has its challenges. Developing machine-learning models and systems requires a confluence of data science, data engineering and development skills. Obtaining and managing the data needed to develop and train machine-learning models is a significant task. And implementing machine-learning technology within real-world production systems can be a major hurdle.

Heres a look at a dozen startup companies, some that have been around for a few years and some just getting off the ground, that are addressing the challenges associated with machine learning.

AI.Reverie

Top Executive: Daeil Kim, Co-Founder, CEO

Headquarters: New York

AI.Reverie develops AI and machine -earning technology for data generation, data labeling and data enhancement tasks for the advancement of computer vision. The companys simulation platform is used to help acquire, curate and annotate the large amounts of data needed to train computer vision algorithms and improve AI applications.

In October AI.Reverie was named a Gartner Cool Vendor in AI core technologies.

Anodot

Top Executive: David Drai, Co-Founder, CEO

Headquarters: Redwood City, Calif.

Anodots Deep 360 autonomous business monitoring platform uses machine learning to continuously monitor business metrics, detect significant anomalies and help forecast business performance.

Anodots algorithms have a contextual understanding of business metrics, providing real-time alerts that help users cut incident costs by as much as 80 percent.

Anodot has been granted patents for technology and algorithms in such areas as anomaly score, seasonality and correlation. Earlier this year the company raised $35 million in Series C funding, bringing its total funding to $62.5 million.

BigML

Top Executive: Francisco Martin, Co-Founder, CEO

Headquarters: Corvallis, Ore.

BigML offers a comprehensive, managed machine-learning platform for easily building and sharing datasets and data models, and making highly automated, data-driven decisions. The companys programmable, scalable machine -earning platform automates classification, regression, time series forecasting, cluster analysis, anomaly detection, association discovery and topic modeling tasks.

The BigML Preferred Partner Program supports referral partners and partners that sell BigML and oversee implementation projects. Partner A1 Digital, for example, has developed a retail application on the BigML platform that helps retailers predict sales cannibalizationwhen promotions or other marketing activity for one product can lead to reduced demand for other products.

StormForge

Top Executive: Matt Provo, Founder, CEO

Headquarters: Cambridge, Mass.

StormForge provides machine learning-based, cloud-native application testing and performance optimization software that helps organizations optimize application performance in Kubernetes.

StormForge was founded under the name Carbon Relay and developed its Red Sky Ops tools that DevOps teams use to manage a large variety of application configurations in Kubernetes, automatically tuning them for optimized performance no matter what IT environment theyre operating in.

This week the company acquired German company Stormforger and its performance testing-as-a-platform technology. The company has rebranded as StormForge and renamed its integrated product the StormForge Platform, a comprehensive system for DevOps and IT professionals that can proactively and automatically test, analyze, configure, optimize and release containerized applications.

In February the company said that it had raised $63 million in a funding round from Insight Partners.

Comet.ML

Top Executive: Gideon Mendels, Co-Founder, CEO

Headquarters: New York

Comet.ML provides a cloud-hosted machine-learning platform for building reliable machine-learning models that help data scientists and AI teams track datasets, code changes, experimentation history and production models.

Launched in 2017, Comet.ML has raised $6.8 million in venture financing, including $4.5 million in April 2020.

Dataiku

Top Executive: Florian Douetteau, Co-Founder, CEO

Headquarters: New York

Dataikus goal with its Dataiku DSS (Data Science Studio) platform is to move AI and machine-learning use beyond lab experiments into widespread use within data-driven businesses. Dataiku DSS is used by data analysts and data scientists for a range of machine-learning, data science and data analysis tasks.

In August Dataiku raised an impressive $100 million in a Series D round of funding, bringing its total financing to $247 million.

Dataikus partner ecosystem includes analytics consultants, service partners, technology partners and VARs.

DotData

Top Executive: Ryohei Fujimaki, Founder, CEO

Headquarters: San Mateo, Calif.

DotData says its DotData Enterprise machine-learning and data science platform is capable of reducing AI and business intelligence development projects from months to days. The companys goal is to make data science processes simple enough that almost anyone, not just data scientists, can benefit from them.

The DotData platform is based on the companys AutoML 2.0 engine that performs full-cycle automation of machine-learning and data science tasks. In July the company debuted DotData Stream, a containerized AI/ML model that enables real-time predictive capabilities.

Eightfold.AI

Top Executive: Ashutosh Garg, Co-Founder, CEO

Headquarters: Mountain View, Calif.

Eightfold.AI develops the Talent Intelligence Platform, a human resource management system that utilizes AI deep learning and machine-learning technology for talent acquisition, management, development, experience and diversity. The Eightfold system, for example, uses AI and ML to better match candidate skills with job requirements and improves employee diversity by reducing unconscious bias.

In late October Eightfold.AI announced a $125 million Series round of financing, putting the startups value at more than $1 billion.

H2O.ai

Top Executive: Sri Ambati, Co-Founder, CEO

Headquarters: Mountain View, Calif.

H2O.ai wants to democratize the use of artificial intelligence for a wide range of users.

The companys H2O open-source AI and machine-learning platform, H2O AI Driverless automatic machine-learning software, H20 MLOps and other tools are used to deploy AI-based applications in financial services, insurance, health care, telecommunications, retail, pharmaceutical and digital marketing.

H2O.ai recently teamed up with data science platform developer KNIME to integrate Driverless AI for AutoMl with KNIME Server for workflow management across the entire data science life cyclefrom data access to optimization and deployment.

Iguazio

Top Executive: Asaf Somekh, Co-Founder, CEO

Headquarters: New York

The Iguazio Data Science Platform for real-time machine learning applications automates and accelerates machine-learning workflow pipelines, helping businesses develop, deploy and manage AI applications at scale that improve business outcomeswhat the company calls MLOps.

In early 2020 Iguazio raised $24 million in new financing, bringing its total funding to $72 million.

OctoML

Top Executive: Luis Ceze, Co-Founder, CEO

Headquarters: Seattle

OctoMLs Software-as-a-Service Octomizer makes it easier for businesses and organizations to put deep learning models into production more quickly on different CPU and GPU hardware, including at the edge and in the cloud.

OctoML was founded by the team that developed the Apache TVM machine-learning compiler stack project at the University of Washingtons Paul G. Allen School of Computer Science & Engineering. OctoMLs Octomizer is based on the TVM stack.

Tecton

Top Executive: Mike Del Balso, Co-Founder, CEO

Headquarters: San Francisco

Tecton just emerged from stealth in April 2020 with its data platform for machine learning that enables data scientists to turn raw data into production-ready machine-learning features. The startups technology is designed to help businesses and organizations harness and refine vast amounts of data into the predictive signals that feed machine-learning models.

The companys three founders: CEO Mike Del Balso, CTO Kevin Stumpf and Engineering Vice President Jeremy Hermann previously worked together at Uber where they developed the companys Michaelangelo machine-learning platform the ride-sharing company used to scale its operations to thousands of production models serving millions of transactions per second, according to Tecton.

The company started with $25 million in seed and Series A funding co-led by Andreessen Horowitz and Sequoia.

View post:
The 12 Coolest Machine-Learning Startups Of 2020 - CRN

Commentary: Pathmind applies AI, machine learning to industrial operations – FreightWaves

The views expressed here are solely those of the author and do not necessarily represent the views of FreightWaves or its affiliates.

In this installment of the AI in Supply Chain series (#AIinSupplyChain), we explore how Pathmind, an early-stage startup based in San Francisco, is helping companies apply simulation and reinforcement learning to industrial operations.

I asked Chris Nicholson, CEO and founder of Pathmind, What is the problem that Pathmind solves for its customers? Who is the typical customer?

Nicholson said: The typical Pathmind customer is an industrial engineer working at a simulation consulting firm or on the simulation team of a large corporation with industrial operations to optimize. This ranges from manufacturing companies to the natural resources sector, such as mining and oil and gas. Our clients build simulations of physical systems for routing, job scheduling or price forecasting, and then search for strategies to get more efficient.

Pathminds software is suited for manufacturing resource management, energy usage management optimization and logistics optimization.

As with every other startup that I have highlighted as a case in this #AIinSupplyChain series, I asked, What is the secret sauce that makes Pathmind successful? What is unique about your approach? Deep learning seems to be all the rage these days. Does Pathmind use a form of deep learning? Reinforcement learning?

Nicholson responded: We automate tasks that our users find tedious or frustrating so that they can focus on whats interesting. For example, we set up and maintain a distributed computing cluster for training algorithms. We automatically select and tune the right reinforcement learning algorithms, so that our users can focus on building the right simulations and coaching their AI agents.

Echoing topics that we have discussed in earlier articles in this series, he continued: Pathmind uses some of the latest deep reinforcement learning algorithms from OpenAI and DeepMind to find new optimization strategies for our users. Deep reinforcement learning has achieved breakthroughs in gaming, and it is beginning to show the same performance for industrial operations and supply chain.

On its website, Pathmind describes saving a large metals processor 10% of its expenditures on power. It also describes the use of its software to increase ore preparation by 19% at an open-pit mining site.

Given how difficult it is to obtain good quality data for AI and machine learning systems for industrial settings, I asked how Pathmind handles that problem.

Simulations generate synthetic data, and lots of it, said Slin Lee, Pathminds head of engineering. The challenge is to build a simulation that reflects your underlying operations, but there are many tools to validate results.

Once you pass the simulation stage, you can integrate your reinforcement learning policy into an ERP. Most companies have a lot of the data they need in those systems. And yes, theres always data cleansing to do, he added.

As the customer success examples Pathmind provides on its website suggest, mining companies are increasingly looking to adopt and implement new software to increase efficiencies in their internal operations. This is happening because the industry as a whole runs on very old technology, and deposits of ore are becoming increasingly difficult to access as existing mines reach maturity. Moreover, the growing trend toward the decarbonization of supply chains, and the regulations that will eventually follow to make decarbonization a requirement, provide an incentive for mining companies to seize the initiative in figuring out how to achieve that goal by implementing new technology

The areas in which AI and machine learning are making the greatest inroads are mineral exploration using geological data to make the process of seeking new mineral deposits less prone to error and waste; predictive maintenance and safety using data to preemptively repair expensive machinery before breakdowns occur; cyberphysical systems creating digital models of the mining operation in order to quickly simulate various scenarios; and autonomous vehicles using autonomous trucks and other autonomous vehicles and machinery to move resources within the area in which mining operations are taking place.

According to Statista, The revenue of the top 40 global mining companies, which represent a vast majority of the whole industry, amounted to some 692 billion U.S. dollars in 2019. The net profit margin of the mining industry decreased from 25 percent in 2010 to nine percent in 2019.

The trend toward mining companies and other natural-resource-intensive industries adopting new technology is going to continue. So this is a topic we will continue to pay attention to in this column.

Conclusion

If you are a team working on innovations that you believe have the potential to significantly refashion global supply chains, wed love to tell your story at FreightWaves. I am easy to reach on LinkedIn and Twitter. Alternatively, you can reach out to any member of the editorial team at FreightWaves at media@freightwaves.com.

Dig deeper into the #AIinSupplyChain Series with FreightWaves:

Commentary: Optimal Dynamics the decision layer of logistics? (July 7)

Commentary: Combine optimization, machine learning and simulation to move freight (July 17)

Commentary: SmartHop brings AI to owner-operators and brokers (July 22)

Commentary: Optimizing a truck fleet using artificial intelligence (July 28)

Commentary: FleetOps tries to solve data fragmentation issues in trucking (Aug. 5)

Commentary: Bulgarias Transmetrics uses augmented intelligence to help customers (Aug. 11)

Commentary: Applying AI to decision-making in shipping and commodities markets (Aug. 27)

Commentary: The enabling technologies for the factories of the future (Sept. 3)

Commentary: The enabling technologies for the networks of the future (Sept. 10)

Commentary: Understanding the data issues that slow adoption of industrial AI (Sept. 16)

Commentary: How AI and machine learning improve supply chain visibility, shipping insurance (Sept. 24)

Commentary: How AI, machine learning are streamlining workflows in freight forwarding, customs brokerage (Oct. 1)

Commentary: Can AI and machine learning improve the economy? (Oct. 8)

Commentary: Savitude and StyleSage leverage AI, machine learning in fashion retail (Oct. 15)

Commentary: How Japans ABEJA helps large companies operationalize AI, machine learning (Oct. 26)

Authors disclosure: I am not an investor in any early-stage startups mentioned in this article, either personally or through REFASHIOND Ventures. I have no other financial relationship with any entities mentioned in this article.

See the rest here:
Commentary: Pathmind applies AI, machine learning to industrial operations - FreightWaves

Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma – DocWire News

This article was originally published here

J Oral Pathol Med. 2020 Nov 21. doi: 10.1111/jop.13135. Online ahead of print.

ABSTRACT

BACKGROUND/AIM: Machine learning analyses of cancer outcomes for oral cancer remain sparse compared to other types of cancer like breast or lung. The purpose of the present study was to compare the performance of machine learning algorithms in the prediction of global, recurrence-free five-year survival in oral cancer patients based on clinical and histopathological data.

METHODS: Data was gathered retrospectively from 416 patients with oral squamous cell carcinoma. The dataset was divided into training and test dataset (75:25 split). Training performance of five machine learning algorithms (Logistic regression, K-nearest neighbours, Nave Bayes, Decision tree and Random forest classifiers) for prediction was assessed by k-fold cross validation. Variables used in the machine learning models were age, sex, pain symptoms, grade of lesion, lymphovascular invasion, extracapsular extension, perineural invasion, bone invasion and type of treatment. Variable importance was assessed and model performance on the testing data was assessed using receiver operating characteristic curves, accuracy, sensitivity, specificity and F1 score.

RESULTS: The best performing model was the Decision tree classifier, followed by the Logistic Regression model (accuracy 76% and 60%, respectively). The Nave Bayes model did not display any predictive value with 0% specificity.

CONCLUSIONS: Machine learning presents a promising and accessible toolset for improving prediction of oral cancer outcomes. Our findings add to a growing body of evidence that Decision tree models are useful in models in predicting OSCC outcomes. We would advise that future similar studies explore a variety of machine learning models including Logistic regression to help evaluate model performance.

PMID:33220109 | DOI:10.1111/jop.13135

Link:
Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma - DocWire News

Before machine learning can become ubiquitous, here are four things we need to do now – SiliconANGLE News

It wasnt too long ago that concepts such as communicating with your friends in real time through text or accessing your bank account information all from a mobile device seemed outside the realm of possibility. Today, thanks in large part to the cloud, these actions are so commonplace, we hardly even think about these incredible processes.

Now, as we enter the golden age of machine learning, we can expect a similar boom of benefits that previously seemed impossible.

Machine learning is already helping companies make better and faster decisions. In healthcare, the use of predictive models created with machine learning is accelerating research and discovery of new drugs and treatment regiments. In other industries, its helping remote villages of Southeast Africa gain access to financial services and matching individuals experiencing homelessness with housing.

In the short term, were encouraged by the applications of machine learning already benefiting our world. But it has the potential to have an even greater impact on our society. In the future, machine learning will be intertwined and under the hood of almost every application, business process and end-user experience.

However, before this technology becomes so ubiquitous that its almost boring, there are four key barriers to adoption we need to clear first:

The only way that machine learning will truly scale is if we as an industry make it easier for everyone regardless of skill level or resources to be able to incorporate this sophisticated technology into applications and business processes.

To achieve this, companies should take advantage of tools that have intelligence directly built into applications from which their entire organization can benefit. For example, Kabbage Inc., a data and technology company providing small business cash flow solutions, used artificial intelligence to adapt and help processquickly an unprecedented number of small business loans and unemployment claims caused by COVID-19 while preserving more than 945,000 jobs in America. By folding artificial intelligence into personalization, document processing, enterprise search, contact center intelligence, supply chain or fraud detection, all workers can benefit from machine learning in a frictionless way.

As processes go from manual to automatic, workers are free to innovate and invent, and companies are empowered to be proactive instead of reactive. And as this technology becomes more intuitive and accessible, it can be applied to nearly every problem imaginable from the toughest challenges in the information technology department to the biggest environmental issues in the world.

According to the World Economic Forum, the growth of AI could create 58 million net new jobs in the next few years. However, research suggests that there are currently only 300,000 AI engineers worldwide, and AI-related job postings are three times that of job searches with a widening divergence.

Given this significant gap, organizations need to recognize that they simply arent going to be able to hire all the data scientists they need as they continue to implement machine learning into their work. Moreover, this pace of innovation will open doors and ultimately create jobs we cant even begin to imagine today.

Thats why companies around the world such asMorningstar, Liberty MutualandDBS Bank are finding innovative ways to encourage their employees to gain new machine learning skills with a fun, interactive hands-on approach. Its critical that organizations should not only direct their efforts towards training the workforce they have with machine learning skills, but also invest in training programs that develop these important skills in the workforce of tomorrow.

With anything new, often people are of two minds: Either an emerging technology is a panacea and global savior, or it is a destructive force with cataclysmic tendencies. The reality is, more often than not, a nuance somewhere in the middle. These disparate perspectives can be reconciled with information, transparency and trust.

As a first step, leaders in the industry need to help companies and communities learn about machine learning, how it works, where it can be applied and ways to use it responsibly, and understand what it is not.

Second, in order to gain faith in machine learning products, they need to be built by diverse groups of people across gender, race, age, national origin, sexual orientation, disability, culture and education. We will all benefit from individuals who bring varying backgrounds, ideas and points of view to inventing new machine learning products.

Third, machine learning services should be rigorously tested, measuring accuracy against third party benchmarks. Benchmarks should be established by academia, as well as governments, and be applied to any machine learning-based service, creating a rubric for reliable results, as well as contextualizing results for use cases.

Finally, as a society, we need to agree on what parameters should be put in place governing how and when machine learning can be used. With any new technology, there has to be a balance in protecting civil rights while also allowing for continued innovation and practical application of the technology.

Any organization working with machine learning technology should be engaging customers, researchers, academics and others to determine the benefits of its machine learning technology along with the potential risks. And they should be in active conversation with policymakers, supporting legislation, and creating their own guidelines for the responsible use of machine learning technology. Transparency, open dialogue and constant evaluation must always be prioritized to ensure that machine learning is applied appropriately and is continuously enhanced.

Through machine learning weve already accomplished so much, and yet its still day one (and we havent even had a cup of coffee yet!). If were using machine learning to help endangered orangutans, just imagine how it could be used to help save and preserve our oceans and marine life. If were using this technology to create digital snapshots of the planets forests in real-time, imagine how it could be used to predict and prevent forest fires. If machine learning can be used to help connect small-holding farmers to the people and resources they need to achieve their economic potential, imagine how it could help end world hunger.

To achieve this reality, we as an industry have a lot of work ahead of us. Im incredibly optimistic that machine learning will help us solve some of the worlds toughest challenges and create amazing end-user experiences weve never even dreamed. Before we know it, machine learning will be as familiar as reaching for our phones.

Swami Sivasubramanianis vice president of Amazon AI, running AI and machine learning services for Amazon Web Services Inc. He wrote this article for SiliconANGLE.

Show your support for our mission with our one-click subscription to our YouTube channel (below). The more subscribers we have, the more YouTube will suggest relevant enterprise and emerging technology content to you. Thanks!

Support our mission: >>>>>> SUBSCRIBE NOW >>>>>> to our YouTube channel.

Wed also like to tell you about our mission and how you can help us fulfill it. SiliconANGLE Media Inc.s business model is based on the intrinsic value of the content, not advertising. Unlike many online publications, we dont have a paywall or run banner advertising, because we want to keep our journalism open, without influence or the need to chase traffic.The journalism, reporting and commentary onSiliconANGLE along with live, unscripted video from our Silicon Valley studio and globe-trotting video teams attheCUBE take a lot of hard work, time and money. Keeping the quality high requires the support of sponsors who are aligned with our vision of ad-free journalism content.

If you like the reporting, video interviews and other ad-free content here,please take a moment to check out a sample of the video content supported by our sponsors,tweet your support, and keep coming back toSiliconANGLE.

Visit link:
Before machine learning can become ubiquitous, here are four things we need to do now - SiliconANGLE News

What is Machine Learning and what are its benefits – Somag News

Eventually the keyboard of a smartphone is able to complete a sentence that we started. Who ever, when starting a browser search, saw the software indicate exactly what they were looking for? This is the concept behind Machine Learning, a branch of artificial intelligence that aims to make systems learn to behave more intelligently based on a large amount of data.

While the idea of AI is to make machines in a certain way think like humans, Machine Learning automates processes, creating shortcuts and seeking to predict actions according to user behavior or by analyzing information from a multitude of sources.

As a system that behaves by analyzing data, Machine Learning uses the users information to create a line of learning according to the registered behavior. So you may ask yourself, when did I pass information about my behavior to the machine?. The answer is: every time you surf the internet, use online services or use a connected device.

Companies like Google, Microsoft and Amazon are responsible for much of the data traffic from various services, such as search engines, e-mail services and e-commerce. These companies have huge computational centers (Big Datas) and receive information about what people are looking for, talking about or even wanting to buy. This happens through algorithms that are able to analyze data from different sources, such as social networks, research histories and the like, and the machine can understand the users behavior and create different profiles according to location, age group and common interests.

Machine Learning is not simply automation, but understanding routines to establish a working pattern, for example: in a smart home, the owner leaves in the morning and always comes back around 6 pm; when you get home, the lights are turned on automatically and the coffee maker is turned on to make an afternoon coffee. What if the person arrives early so that they dont have to turn on the lights? And on a hot day, would it not be more interesting to have a drink or water instead of a coffee? This is exactly where Machine Learning can make a difference.

Analyzing the users behavior, a machine-learning system is able to only activate the house lights if necessary and can use the room temperature to consider whether it is more interesting to start the coffee maker or send a message to the owner recommending drinking more water in days with low humidity. All of this can be based on searches performed on the smartphone, trends in social networks and mainly cross-data.

In addition to browsers that indicate the best results according to navigation, Machine Learning is used in services such as streaming platforms that indicate content related to what you have recently watched, mobility apps that show the best path according to traffic flow and, of course, operating systems that are capable of creating assistants that behave more and more like real virtual secretaries.

Machine Learning is also very widespread in IT security systems and has more and more solutions that benefit from technological advances to implement machine learning in new areas, such as meteorology and medicine.

See the original post:
What is Machine Learning and what are its benefits - Somag News