Archive for the ‘Machine Learning’ Category

Why 2020 will be the Year of Automated Machine Learning – Gigabit Magazine – Technology News, Magazine and Website

As the fuel that powers their ongoing digital transformation efforts, businesses everywhere are looking for ways to derive as much insight as possible from their data. The accompanying increased demand for advanced predictive and prescriptive analytics has, in turn, led to a call for more data scientists proficient with the latest artificial intelligence (AI) and machine learning (ML) tools.

But such highly-skilled data scientists are expensive and in short supply. In fact, theyre such a precious resource that the phenomenon of the citizen data scientist has recently arisen to help close the skills gap. A complementary role, rather than a direct replacement, citizen data scientists lack specific advanced data science expertise. However, they are capable of generating models using state-of-the-art diagnostic and predictive analytics. And this capability is partly due to the advent of accessible new technologies such as automated machine learning (AutoML) that now automate many of the tasks once performed by data scientists.

Algorithms and automation

According to a recent Harvard Business Review article, Organisations have shifted towards amplifying predictive power by coupling big data with complex automated machine learning. AutoML, which uses machine learning to generate better machine learning, is advertised as affording opportunities to democratise machine learning by allowing firms with limited data science expertise to develop analytical pipelines capable of solving sophisticated business problems.

Comprising a set of algorithms that automate the writing of other ML algorithms, AutoML automates the end-to-end process of applying ML to real-world problems. By way of illustration, a standard ML pipeline is made up of the following: data pre-processing, feature extraction, feature selection, feature engineering, algorithm selection, and hyper-parameter tuning. But the considerable expertise and time it takes to implement these steps means theres a high barrier to entry.

AutoML removes some of these constraints. Not only does it significantly reduce the time it would typically take to implement an ML process under human supervision, it can also often improve the accuracy of the model in comparison to hand-crafted models, trained and deployed by humans. In doing so, it offers organisations a gateway into ML, as well as freeing up the time of ML engineers and data practitioners, allowing them to focus on higher-order challenges.

SEE ALSO:

Overcoming scalability problems

The trend for combining ML with Big Data for advanced data analytics began back in 2012, when deep learning became the dominant approach to solving ML problems. This approach heralded the generation of a wealth of new software, tooling, and techniques that altered both the workload and the workflow associated with ML on a large scale. Entirely new ML toolsets, such as TensorFlow and PyTorch were created, and people increasingly began to engage more with graphics processing units (GPUs) to accelerate their work.

Until this point, companies efforts had been hindered by the scalability problems associated with running ML algorithms on huge datasets. Now, though, they were able to overcome these issues. By quickly developing sophisticated internal tooling capable of building world-class AI applications, the BigTech powerhouses soon overtook their Fortune 500 peers when it came to realising the benefits of smarter data-driven decision-making and applications.

Insight, innovation and data-driven decisions

AutoML represents the next stage in MLs evolution, promising to help non-tech companies access the capabilities they need to quickly and cheaply build ML applications.

In 2018, for example, Google launched its Cloud AutoML. Based on Neural Architecture Search (NAS) and transfer learning, it was described by Google executives as having the potential to make AI experts even more productive, advance new fields in AI, and help less-skilled engineers build powerful AI systems they previously only dreamed of.

The one downside to Googles AutoML is that its a proprietary algorithm. There are, however, a number of alternative open-source AutoML libraries such as AutoKeras, developed by researchers at Texas University and used to power the NAS algorithm.

Technological breakthroughs such as these have given companies the capability to easily build production-ready models without the need for expensive human resources. By leveraging AI, ML, and deep learning capabilities, AutoML gives businesses across all industries the opportunity to benefit from data-driven applications powered by statistical models - even when advanced data science expertise is scarce.

With organisations increasingly reliant on civilian data scientists, 2020 is likely to be the year that enterprise adoption of AutoML will start to become mainstream. Its ease of access will compel business leaders to finally open the black box of ML, thereby elevating their knowledge of its processes and capabilities. AI and ML tools and practices will become ever more ingrained in businesses everyday thinking and operations as they become more empowered to identify those projects whose invaluable insight will drive better decision-making and innovation.

By Senthil Ravindran, EVP and global head of cloud transformation and digital innovation, Virtusa

More:
Why 2020 will be the Year of Automated Machine Learning - Gigabit Magazine - Technology News, Magazine and Website

How to Pick a Winning March Madness Bracket – Machine Learning Times – machine learning & data science news – The Predictive Analytics Times

Introduction

In 2019, over 40 million Americans wagered money on March Madness brackets, according to the American Gaming Association. Most of this money was bet in bracket pools, which consist of a group of people each entering their predictions of the NCAA tournament games along with a buy-in. The bracket that comes closest to being right wins. If you also consider the bracket pools where only pride is at stake, the number of participants is much greater. Despite all this attention, most do not give themselves the best chance to win because they are focused on the wrong question.

The Right Question

Mistake #3 in Dr. John Elders Top 10 Data Science Mistakes is to ask the wrong question. A cornerstone of any successful analytics project starts with having the right project goal; that is, to aim at the right target. If youre like most people, when you fill out your bracket, you ask yourself, What do I think is most likely to happen? This is the wrong question to ask if you are competing in a pool because the objective is to win money, NOT to make the most correct bracket. The correct question to ask is: What bracket gives me the best chance to win $? (This requires studying the payout formula. I used ESPN standard scoring (320 possible points per round) with all pool money given to the winner. (10 points are awarded for each correct win in the round of 64, 20 in the round of 32, and so forth, doubling until 320 are awarded for a correct championship call.))

While these questions seem similar, the brackets they produce will be significantly different.

If you ignore your opponents and pick the teams with the best chance to win games you will reduce your chance of winning money. Even the strongest team is unlikely to win it all, and even if they do, plenty of your opponents likely picked them as well. The best way to optimize your chances of making money is to choose a champion team with a good chance to win who is unpopular with your opponents.

Knowing how other people in your pool are filling out their brackets is crucial, because it helps you identify teams that are less likely to be picked. One way to see how others are filling out their brackets is via ESPNs Who Picked Whom page (Figure 1). It summarizes how often each team is picked to advance in each round across all ESPN brackets and is a great first step towards identifying overlooked teams.

Figure 1. ESPNs Who Picked Whom Tournament Challenge page

For a team to be overlooked, their perceived chance to win must be lower than their actual chance to win. The Who Picked Whom page provides an estimate of perceived chance to win, but to find undervalued teams we also need estimates for actual chance to win. This can range from a complex prediction model to your own gut feeling. Two sources I trust are 538s March Madness predictions and Vegas future betting odds. 538s predictions are based on a combination of computer rankings and has predicted performance well in past tournaments. There is also reason to pay attention to Vegas odds, because if they were too far off, the sportsbooks would lose money.

However, both sources have their flaws. 538 is based on computer ratings, so while they avoid human bias, they miss out on expert intuition. Most Vegas sportsbooks likely use both computer ratings and expert intuition to create their betting odds, but they are strongly motivated to have equal betting on all sides, so they are significantly affected by human perception. For example, if everyone was betting on Duke to win the NCAA tournament, they would increase Dukes betting odds so that more people would bet on other teams to avoid large losses. When calculating win probabilities for this article, I chose to average 538 and Vegas predictions to obtain a balance I was comfortable with.

Lets look at last year. Figure 2 compares a teams perceived chance to win (based on ESPNs Who Picked Whom) to their actual chance to win (based on 538-Vegas averaged predictions) for the leading 2019 NCAA Tournament teams. (Probabilities for all 64 teams in the tournament appear in Table 6 in the Appendix.)

Figure 2. Actual versus perceived chance to win March Madness for 8 top teams

As shown in Figure 2, participants over-picked Duke and North Carolina as champions and under-picked Gonzaga and Virginia. Many factors contributed to these selections; for example, most predictive models, avid sports fans, and bettors agreed that Duke was the best team last year. If you were the picking the bracket most likely to occur, then selecting Duke as champion was the natural pick. But ignoring selections made by others in your pool wont help you win your pool.

While this graph is interesting, how can we turn it into concrete takeaways? Gonzaga and Virginia look like good picks, but what about the rest of the teams hidden in that bottom left corner? Does it ever make sense to pick teams like Texas Tech, who had a 2.6% chance to win it all, and only 0.9% of brackets picking them? How much does picking an overvalued favorite like Duke hurt your chances of winning your pool?

To answer these questions, I simulated many bracket pools and found that the teams in Gonzagas and Virginias spots are usually the best picksthe most undervalued of the top four to five favorites. However, as the size of your bracket pool increases, overlooked lower seeds like third-seeded Texas Tech or fourth-seeded Virginia Tech become more attractive. The logic for this is simple: the chance that one of these teams wins it all is small, but if they do, then you probably win your pool regardless of the number of participants, because its likely no one else picked them.

Simulations Methodology

To simulate bracket pools, I first had to simulate brackets. I used an average of the Vegas and 538 predictions to run many simulations of the actual events of March Madness. As discussed above, this method isnt perfect but its a good approximation. Next, I used the Who Picked Whom page to simulate many human-created brackets. For each human bracket, I calculated the chance it would win a pool of size by first finding its percentile ranking among all human brackets assuming one of the 538-Vegas simulated brackets were the real events. This percentile is basically the chance it is better than a random bracket. I raised the percentile to the power, and then repeated for all simulated 538-Vegas brackets, averaging the results to get a single win probability per bracket.

For example, lets say for one 538-Vegas simulation, my bracket is in the 90th percentile of all human brackets, and there are nine other people in my pool. The chance I win the pool would be. If we assumed a different simulation, then my bracket might only be in the 20th percentile, which would make my win probability . By averaging these probabilities for all 538-Vegas simulations we can calculate an estimate of a brackets win probability in a pool of size , assuming we trust our input sources.

Results

I used this methodology to simulate bracket pools with 10, 20, 50, 100, and 1000 participants. The detailed results of the simulations are shown in Tables 1-6 in the Appendix. Virginia and Gonzaga were the best champion picks when the pool had 50 or fewer participants. Yet, interestingly, Texas Tech and Purdue (3-seeds) and Virginia Tech (4-seed) were as good or better champion picks when the pool had 100 or more participants.

General takeaways from the simulations:

Additional Thoughts

We have assumed that your local pool makes their selections just like the rest of America, which probably isnt true. If you live close to a team thats in the tournament, then that team will likely be over-picked. For example, I live in Charlottesville (home of the University of Virginia), and Virginia has been picked as the champion in roughly 40% of brackets in my pools over the past couple of years. If you live close to a team with a high seed, one strategy is to start with ESPNs Who Picked Whom odds, and then boost the odds of the popular local team and correspondingly drop the odds for all other teams. Another strategy Ive used is to ask people in my pool who they are picking. It is mutually beneficial, since Id be less likely to pick whoever they are picking.

As a parting thought, I want to describe a scenario from the 2019 NCAA tournament some of you may be familiar with. Auburn, a five seed, was winning by two points in the waning moments of the game, when they inexplicably fouled the other team in the act of shooting a three-point shot with one second to go. The opposing player, a 78% free throw shooter, stepped to the line and missed two out of three shots, allowing Auburn to advance. This isnt an alternate reality; this is how Auburn won their first-round game against 12-seeded New Mexico State. They proceeded to beat powerhouses Kansas, North Carolina, and Kentucky on their way to the Final Four, where they faced the exact same situation against Virginia. Virginias Kyle Guy made all his three free throws, and Virginia went on to win the championship.

I add this to highlight an important qualifier of this analysisits impossible to accurately predict March Madness. Were the people who picked Auburn to go to the Final Four geniuses? Of course not. Had Terrell Brown of New Mexico State made his free throws, they would have looked silly. There is no perfect model that can predict the future, and those who do well in the pools are not basketball gurus, they are just lucky. Implementing the strategies talked about here wont guarantee a victory; they just reduce the amount of luck you need to win. And even with the best modelsyoull still need a lot of luck. It is March Madness, after all.

Appendix: Detailed Analyses by Bracket Sizes

At baseline (randomly), a bracket in a ten-person pool has a 10% chance to win. Table 1 shows how that chance changes based on the round selected for a given team to lose. For example, brackets that had Virginia losing in the Round of 64 won a ten-person pool 4.2% of the time, while brackets that picked them to win it all won 15.1% of the time. As a reminder, these simulations were done with only pre-tournament informationthey had no data indicating that Virginia was the eventual champion, of course.

Table 1 Probability that a bracket wins a ten-person bracket pool given that it had a given team (row) making it to a given round (column) and no further

In ten-person pools, the best performing brackets were those that picked Virginia or Gonzaga as the champion, winning 15% of the time. Notably, early round picks did not have a big influence on the chance of winning the pool, the exception being brackets that had a one or two seed losing in the first round. Brackets that had a three seed or lower as champion performed very poorly, but having lower seeds making the Final Four did not have a significant impact on chance of winning.

Table 2 shows the same information for bracket pools with 20 people. The baseline chance is now 5%, and again the best performing brackets are those that picked Virginia or Gonzaga to win. Similarly, picks in the first few rounds do not have much influence. Michigan State has now risen to the third best Champion pick, and interestingly Purdue is the third best runner-up pick.

Table 2 Probability that a bracket wins a 20-person bracket pool given that it had a given team (row) making it to a given round (column) and no further

When the bracket pool size increases to 50, as shown in Table 3, picking the overvalued favorites (Duke and North Carolina) as champions significantly lowers your baseline chances (2%). The slightly undervalued two and three seeds now raise your baseline chances when selected as champions, but Virginia and Gonzaga remain the best picks.

Table 3 Probability that a bracket wins a 50-person bracket pool given that it had a given team (row) making it to a given round (column) and no further

With the bracket pool size at 100 (Table 4), Virginia and Gonzaga are joined by undervalued three-seeds Texas Tech and Purdue. Picking any of these four raises your baseline chances from 1% to close to 2%. Picking Duke or North Carolina again hurts your chances.

Table 4 Probability that a bracket wins a 100-person bracket pool given that it had a given team (row) making it to a given round (column) and no further

When the bracket pool grows to 1000 people (Table 5), there is a complete changing of the guard. Virginia Tech is now the optimal champion pick, raising your baseline chance of winning your pool from 0.1% to 0.4%, followed by the three-seeds and sixth-seeded Iowa State are the best champion picks.

Table 5 Probability that a bracket wins a 1000-person bracket pool given that it had a given team (row) making it to a given round (column) and no further

For Reference, Table 6 shows the actual chance to win versus the chance of being picked to win for all teams seeded seventh or better. These chances are derived from the ESPN Who Picked Whom page and the 538-Vegas predictions. The data for the top eight teams in Table 6 is plotted in Figure 2. Notably, Duke and North Carolina are overvalued, while the rest are all at least slightly undervalued.

The teams in bold in Table 6 are examples of teams that are good champion picks in larger pools. They all have a high ratio of actual chance to win to chance of being picked to win, but a low overall actual chance to win.

Table 6 Actual odds to win Championship vs Chance Team is Picked to Win Championship.

Undervalued teams in green; over-valued in red.

About the Author

Robert Robison is an experienced engineer and data analyst who loves to challenge assumptions and think outside the box. He enjoys learning new skills and techniques to reveal value in data. Robert earned a BS in Aerospace Engineering from the University of Virginia, and is completing an MS in Analytics through Georgia Tech.

In his free time, Robert enjoys playing volleyball and basketball, watching basketball and football, reading, hiking, and doing anything with his wife, Lauren.

Go here to read the rest:
How to Pick a Winning March Madness Bracket - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times

Inspur Re-Elected as Member of SPEC OSSC and Chair of SPEC Machine Learning – HPCwire

SAN JOSE, Calif., Feb. 21, 2020 Recently, the international evaluation agency Standard Performance Evaluation Corporation (SPEC) has finalized the election of new Open System Steering Committee (OSSC) executive members, which include Inspur, Intel, AMD, IBM, Oracle and other three companies.

It is worth noting that Inspur, a re-elected OSSC member, was also re-elected as the chair of the SPEC Machine Learning (SPEC ML) working group. The development plan of ML test benchmark proposed by Inspur has been approved by members which aims to provide users with standard on evaluating machine learning computing performance.

SPEC is a global and authoritative third-party application performance testing organization established in 1988, which aims to establish and maintain a series of performance, function, and energy consumption benchmarks, and provides important reference standards for users to evaluate the performance and energy efficiency of computing systems. The organization consists of 138 well-known technology companies, universities and research institutions in the industry such as Intel, Oracle, NVIDIA, Apple, Microsoft, Inspur, Berkeley, Lawrence Berkeley National Laboratory, etc., and its test standard has become an important indicator for many users to evaluate overall computing performance.

The OSSC executive committee is the permanent body of the SPEC OSG (short for Open System Group, the earliest and largest committee established by SPEC) and is responsible for supervising and reviewing the daily work of major technical groups of OSG, major issues, additions and deletions of members, development direction of research and decision of testing standards, etc. Meanwhile, OSSC executive committee uniformly manages the development and maintenance of SPEC CPU, SPEC Power, SPEC Java, SPEC Virt and other benchmarks.

Machine Learning is an important direction in AI development. Different computing accelerator technologies such as GPU, FPGA, ASIC, and different AI frameworks such as TensorFlow and Pytorch provide customers with a rich marketplace of options. However, the next important thing for the customer to consider is how to evaluate the computing efficiency of various AI computing platforms. Both enterprises and research institutions require a set of benchmarks and methods to effectively measure performance to find the right solution for their needs.

In the past year, Inspur has done much to advance the SPEC ML standard specific component development, contributing test models, architectures, use cases, methods and so on, which have been duly acknowledged by SPEC organization and its members.

Joe Qiao, General Manager of Inspur Solution and Evaluation Department, believes that SPEC ML can provide an objective comparison standard for AI / ML applications, which will help users choose a computing system that best meet their application needs. Meanwhile, it also provides a unified measurement standard for manufacturers to improve their technologies and solution capabilities, advancing the development of the AI industry.

About Inspur

Inspur is a leading provider of data center infrastructure, cloud computing, and AI solutions, ranking among the worlds top 3 server manufacturers. Through engineering and innovation, Inspur delivers cutting-edge computing hardware design and extensive product offerings to address important technology arenas like open computing, cloud data center, AI and deep learning. Performance-optimized and purpose-built, our world-class solutions empower customers to tackle specific workloads and real-world challenges. To learn more, please go towww.inspursystems.com.

Source: Inspur

Read the original:
Inspur Re-Elected as Member of SPEC OSSC and Chair of SPEC Machine Learning - HPCwire

How businesses and governments should embrace AI and Machine Learning – TechCabal

Leadership team of credit-as-a-service startup Migo, one of a growing number of businesses using AI to create consumer-facing products.

The ability to make good decisions is literally the reason people trust you with responsibilities. Whether you work for a government or lead a team at a private company, your decision-making process will affect lives in very real ways.

Organisations often make poor decisions because they fail to learn from the past. Wherever a data-collection reluctance exists, there is a fair chance that mistakes will be repeated. Bad policy goals will often be a consequence of faulty evidentiary support, a failure to sufficiently look ahead by not sufficiently looking back.

But as Daniel Kahneman, author of Thinking Fast and Slow, says:

The idea that the future is unpredictable is undermined every day by the ease with which the past is explained. If governments and business leaders will live up to their responsibilities, enthusiastically embracing methodical decision-making tools should be a no-brainer.

Mass media representations project artificial intelligence in futuristic, geeky terms. But nothing could be further from the truth.

While it is indeed scientific, AI can be applied in practical everyday life today. Basic interactions with AI include algorithms that recommend articles to you, friend suggestions on social media and smart voice assistants like Alexa and Siri.

In the same way, government agencies can integrate AI into regular processes necessary for society to function properly.

Managing money is an easy example to begin with. AI systems can be used to streamline data points required during budget preparations and other fiscal processes. Based on data collected from previous fiscal cycles, government agencies could reasonably forecast needs and expectations for future years.

With its large trove of citizen data, governments could employ AI to effectively reduce inequalities in outcomes and opportunities. Big Data gives a birds-eye view of the population, providing adequate tools for equitably distributing essential infrastructure.

Perhaps a more futuristic example is in drafting legislation. Though a young discipline, legimatics includes the use of artificial intelligence in legal and legislative problem-solving.

Democracies like Nigeria consider public input a crucial aspect of desirable law-making. While AI cannot yet be relied on to draft legislation without human involvement, an AI-based approach can produce tools for specific parts of legislative drafting or decision support systems for the application of legislation.

In Africa, businesses are already ahead of most governments in AI adoption. Credit scoring based on customer data has become popular in the digital lending space.

However, there is more for businesses to explore with the predictive powers of AI. A particularly exciting prospect is the potential for new discoveries based on unstructured data.

Machine learning could broadly be split into two sections: supervised and unsupervised learning. With supervised learning, a data analyst sets goals based on the labels and known classifications of the dataset. The resulting insights are useful but do not produce the sort of new knowledge that comes from unsupervised learning processes.

In essence, AI can be a medium for market-creating innovations based on previously unknown insight buried in massive caches of data.

Digital lending became a market opportunity in Africa thanks to growing smartphone availability. However, customer data had to be available too for algorithms to do their magic.

This is why it is desirable for more data-sharing systems to be normalised on the continent to generate new consumer products. Fintech sandboxes that bring the public and private sectors together aiming to achieve open data standards should therefore be encouraged.

Artificial intelligence, like other technologies, is neutral. It can be used for social good but also can be diverted for malicious purposes. For both governments and businesses, there must be circumspection and a commitment to use AI responsibly.

China is a cautionary tale. The Communist state currently employs an all-watching system of cameras to enforce round-the-clock citizen surveillance.

By algorithmically rating citizens on a so-called social credit score, Chinas ultra-invasive AI effectively precludes individual freedom, compelling her 1.3 billion people to live strictly by the Politburos ideas of ideal citizenship.

On the other hand, businesses must be ethical in providing transparency to customers about how data is harvested to create products. At the core of all exchange must be trust, and a verifiable, measurable commitment to do no harm.

Doing otherwise condemns modern society to those dystopian days everybody dreads.

How can businesses and governments use Artificial Intelligence to find solutions to challenges facing the continent? Join entrepreneurs, innovators, investors and policymakers in Africas AI community at TechCabals emerging tech townhall. At the event, stakeholders including telcos and financial institutions will examine how businesses, individuals and countries across the continent can maximize the benefits of emerging technologies, specifically AI and Blockchain. Learn more about the event and get tickets here.

Originally posted here:
How businesses and governments should embrace AI and Machine Learning - TechCabal

Cisco Enhances IoT Platform with 5G Readiness and Machine Learning – The Fast Mode

Cisco on Friday announced advancements to its IoT portfolio that enable service provider partners to offer optimized management of cellular IoT environments and new 5G use-cases.

Cisco IoT Control Center(formerly Jasper Control Center) is introducing new innovations to improve management and reduce deployment complexity. These include:

Using Machine Learning (ML) to improve management: With visibility into 3 billion events every day, Cisco IoT Control Center uses the industry's broadest visibility to enable machine learning models to quickly identify anomalies and address issues before they impact a customer. Service providers can also identify and alert customers of errant devices, allowing for greater endpoint security and control.

Smart billing to optimize rate plans:Service providers can improve customer satisfaction by enabling Smart billing to automatically optimize rate plans. Policies can also be created to proactively send customer notifications should usage changes or rate plans need to be updated to help save enterprises money.

Support for global supply chains: SIM portability is an enterprise requirement to support complex supply chains spanning multiple service providers and geographies. It is time-consuming and requires integrations between many different service providers and vendors, driving up costs for both. Cisco IoT Control Center now provides eSIM as a service, enabling a true turnkey SIM portability solution to deliver fast, reliable, cost-effective SIM handoffs between service providers.

Cisco IoT Control Center has taken steps towards 5G readiness to incubate and promote high value 5G business use cases that customers can easily adopt.

Vikas Butaney, VP Product Management IoT, CiscoCellular IoT deployments are accelerating across connected cars, utilities and transportation industries and with 5G and Wi-Fi 6 on the horizon IoT adoption will grow even faster. Cisco is investing in connectivity management, IoT networking, IoT security, and edge computing to accelerate the adoption of IoT use-cases.

Read more from the original source:
Cisco Enhances IoT Platform with 5G Readiness and Machine Learning - The Fast Mode