Archive for the ‘Machine Learning’ Category

Chemists are training machine learning algorithms used by Facebook and Google to find new molecules – News@Northeastern

For more than a decade, Facebook and Google algorithms have been learning as much as they can about you. Its how they refine their systems to deliver the news you read, those puppy videos you love, and the political ads you engage with.

These same kinds of algorithms can be used to find billions of molecules and catalyze important chemical reactions that are currently induced with expensive and toxic metals, says Steven A. Lopez, an assistant professor of chemistry and chemical biology at Northeastern.

Lopez is working with a team of researchers to train machine learning algorithms to spot the molecular patterns that could help find new molecules in bulk, and fast. Its a much smarter approach than scanning through billionsand billionsof molecules without a streamlined process.

Were teaching the machines to learn the chemistry knowledge that we have, Lopez says. Why should I just have the chemical intuition for myself?

The alternative to using expensive metals is organic molecules, and particularly plastics, which are everywhere, Lopez says. Depending on their molecular structure and ability to absorb light, these plastics can be converted with chemistry to produce better materials for todays most important problems.

Lopez says the goal is to find molecules with the right properties and similar structures as metal catalysts. But to attain that goal, Lopez will need to explore an enormous number of molecules.

Thus far, scientists have been able to synthesize only about a million molecules. But conservative estimates of the number of possible molecules that could be analyzed is a quintillion, which is 10 raised to the power of 18, or the number one followed by 18 zeros.

Lopez thinks of this enormous number of possibilities as a vast ocean made up of billions of unexplored molecules. Such an immense molecular space is practically impossible to navigateeven if scientists were to combine experiments with supercomputer analysis.

Lopez says all of the calculations that have ever been done by computers add up to about a billion, or 10 to the ninth power. Thats about a million times less than the possible molecules.

Forget it, theres no chance, he says. We just have to use a smarter search technique.

Thats why Lopez is leading a team, supported by a grant from the National Science Foundation, that includes research from Tufts University, Washington University in St. Louis, Drexel University, and Colorado School of Mines. The team is using an open-access database of organic molecules called VERDE materials DB, which Lopez and colleagues recently published, to improve their algorithms and find more useful molecules.

The database will also register newly found molecules, and can serve as a data hub of information for researchers across several different domains, Lopez says. Thats because it can launch researchers toward finding different molecules with many new properties and applications.

In tandem with the database, the algorithms will allow scientists to use computational resources more efficiently. After molecules of interest are found, researchers will recalibrate the algorithm to find more similar groups of molecules.

The active-search algorithm, developed by Roman Garnett at Washington University in St. Louis, uses a process similar to the classic board game Battleship, in which two players guess hidden locations off a grid to target and destroy vessels within a naval fleet.

In that grid, players place vessels as far apart as possible to make opponents miss targets. Once a ship is hit, players can readjust their strategy and redirect their attacks to the coordinates surrounding that hit.

Thats exactly how Lopez thinks of the concept of exploring a vast ocean of molecules.

We are looking for regions within this ocean, he says. We are starting to set up the coordinates of all the possible molecules.

Hitting the right candidate molecules might also expand the understanding that chemists have of this unexplored chemical space.

Maybe well find out through this analysis that we have something really at the edge of what we call the ocean, and that we can expand this ocean out a bit more in that region, Lopez says. Those are things that we wouldnt [be able to find by searching] with a brute force, trial-and-error kind of approach.

For media inquiries, please contact Jessica Hair at j.hair@northeastern.edu or 617-373-5718.

Visit link:
Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern

Forget Machine Learning, Constraint Solvers are What the Enterprise Needs – – RTInsights

Constraint solvers take a set of hard and soft constraints in an organization and formulate the most effective plan, taking into account real-time problems.

When a business looks to implement an artificial intelligence strategy, even proper expertise can be too narrow. Its what has led many businesses to deploy machine learning or neural networks to solve problems that require other forms of AI, like constraint solvers.

Constraint solvers take a set of hard and soft constraints in an organization and formulate the most effective plan, taking into account real-time problems. It is the best solution for businesses that have timetabling, assignment or efficiency issues.

In a RedHat webinar, principal software engineer, Geoffrey De Smet, ran through three use cases for constraint solvers.

Vehicle Routing

Efficient delivery management is something Amazon has seemingly perfected, so much so its now an annoyance to have to wait 3-5 days for an item to be delivered. Using RedHats OptaPlanner, businesses can improve vehicle routing by 9 to 18 percent, by optimizing routes and ensuring drivers are able to deliver an optimal amount of goods.

To start, OptaPlanner takes in all the necessary constraints, like truck capacity and driver specialization. It also takes into account regional laws, like the amount of time a driver is legally allowed to drive per day and creates a route for all drivers in the organization.

SEE ALSO: Machine Learning Algorithms Help Couples Conceive

In a practical case, De Smet said RedHat saved a technical vehicle routing company over $100 million in savings per year with the constraint solver. Driving time was reduced by 25 percent and the business was able to reduce its headcount by 10,000.

The benefits [of OptaPlanner] are to reduce cost, improve customer satisfaction, employee well-being and save the planet, said De Smet. The nice thing about some of these are theyre complementary, for example reducing travel time also reduces fuel consumption.

Employee timetabling

Knowing who is covering what shift can be an infuriating task for managers, with all the requests for time off, illness and mandatory days off. In a place where 9 to 5 isnt regular, it can be even harder to keep track of it all.

RedHats OptaPlanner is able to take all of the hard constraints (two days off per week, no more than eight-hour shifts) and soft constraints (should have up to 10 hours rest between shifts) and can formulate a timetable that takes all that into account. When someone asks for a day off, OptaPlanner is able to reassign workers in real-time.

De Smet said this is useful for jobs that need to run 24/7, like hospitals, the police force, security firms, and international call centers. According to RedHats simulation, it should improve employee well-being by 19 to 85 percent, alongside improvements in retention and customer satisfaction.

Task assignment

Even within a single business department, there are skills only a few employees have. For instance, in a call center, only a few will be able to speak fluently in both English and French. To avoid customer annoyance, it is imperative for employees with the right skill-set to be assigned correctly.

With OptaPlanner, managers are able to add employee skills and have the AI assign employees correctly. Using the call center example again, a bilingual advisor may take all calls in French for one day when theres a high demand for it, but on others have a mix of French and English.

For customer support, the constraint solver would be able to assign a problem to the correct advisor, or to the next best thing, before the customer is connected, thus avoiding giving out the wrong advice or having to pass the customer on to another advisor.

In the webinar, De Smet said that while the constraint solver is a valuable asset for businesses looking to reduce costs, this shouldnt be their only aim.

Without having all stakeholders involved in the implementation, the AI could end up harming other areas of the business, like customer satisfaction or employee retention. This is a similar warning given from all analysts on AI implementation it needs to come from a genuine desire to improve the business to get the best outcome.

See original here:
Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights

Machine Learning to Predict the 1-Year Mortality Rate After Acute Ante | TCRM – Dove Medical Press

Yi-ming Li,1,* Li-cheng Jiang,2,* Jing-jing He,1 Kai-yu Jia,1 Yong Peng,1 Mao Chen1

1Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Peoples Republic of China; 2Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Yong Peng; Mao ChenDepartment of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Street, Chengdu 610041, Peoples Republic of ChinaEmail pengyongcd@126.com; hmaochen@vip.sina.com

Abstract: A formal risk assessment for identifying high-risk patients is essential in clinical practice and promoted in guidelines for the management of anterior acute myocardial infarction. In this study, we sought to evaluate the performance of different machine learning models in predicting the 1-year mortality rate of anterior ST-segment elevation myocardial infarction (STEMI) patients and to compare the utility of these models to the conventional Global Registry of Acute Coronary Events (GRACE) risk scores. We enrolled all of the patients aged >18 years with discharge diagnoses of anterior STEMI in the Western China Hospital, Sichuan University, from January 2011 to January 2017. A total of 1244 patients were included in this study. The mean patient age was 63.812.9 years, and the proportion of males was 78.4%. The majority (75.18%) received revascularization therapy. In the prediction of the 1-year mortality rate, the areas under the curve (AUCs) of the receiver operating characteristic curves (ROCs) of the six models ranged from 0.709 to 0.942. Among all models, XGBoost achieved the highest accuracy (92%), specificity (99%) and f1 score (0.72) for predictions with the full variable model. After feature selection, XGBoost still obtained the highest accuracy (93%), specificity (99%) and f1 score (0.73). In conclusion, machine learning algorithms can accurately predict the rate of death after a 1-year follow-up of anterior STEMI, especially the XGBoost model.

Keywords: machine learning, prediction model, acute anterior myocardial infarction

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Read the original:
Machine Learning to Predict the 1-Year Mortality Rate After Acute Ante | TCRM - Dove Medical Press

Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core – The Register

MIT boffins have devised a software-based tool for predicting how processors will perform when executing code for specific applications.

In three papers released over the past seven months, ten computer scientists describe Ithemal (Instruction THroughput Estimator using MAchine Learning), a tool for predicting the number processor clock cycles necessary to execute an instruction sequence when looped in steady state, and include a supporting benchmark and algorithm.

Throughput stats matter to compiler designers and performance engineers, but it isn't practical to make such measurements on-demand, according to MIT computer scientists Saman Amarasinghe, Eric Atkinson, Ajay Brahmakshatriya, Michael Carbin, Yishen Chen, Charith Mendis, Yewen Pu, Alex Renda, Ondrej Sykora, and Cambridge Yang.

So most systems rely on analytical models for their predictions. LLVM offers a command-line tool called llvm-mca that can presents a model for throughput estimation, and Intel offers a closed-source machine code analyzer called IACA (Intel Architecture Code Analyzer), which takes advantage of the company's internal knowledge about its processors.

Michael Carbin, a co-author of the research and an assistant professor and AI researcher at MIT, told the MIT News Service on Monday that performance model design is something of a black art, made more difficult by Intel's omission of certain proprietary details from its processor documentation.

The Ithemal paper [PDF], presented in June at the International Conference on Machine Learning, explains that these hand-crafted models tend to be an order of magnitude faster than measuring basic block throughput sequences of instructions without branches or jumps. But building these models is a tedious, manual process that's prone to errors, particularly when processor details aren't entirely disclosed.

Using a neural network, Ithemal can learn to predict throughout using a set of labelled data. It relies on what the researchers describe as "a hierarchical multiscale recurrent neural network" to create its prediction model.

"We show that Ithemals learned model is significantly more accurate than the analytical models, dropping the mean absolute percent error by more than 50 per cent across all benchmarks, while still delivering fast estimation speeds," the paper explains.

A second paper presented in November at the IEEE International Symposium on Workload Characterization, "BHive: A Benchmark Suite and Measurement Framework for Validating x86-64 Basic Block Performance Models," describes the BHive benchmark for evaluating Ithemal and competing models, IACAm llvm-mca, and OSACA (Open Source Architecture Code Analyzer). It found Ithemal outperformed other models except on vectorized basic blocks.

And in December at the NeurIPS conference, the boffins presented a third paper titled Compiler Auto-Vectorization with Imitation Learning that describes a way to automatically generate compiler optimizations in a way that outperforms LLVMs SLP vectorizer.

The academics argue that their work shows the value of machine learning in the context of performance analysis.

"Ithemal demonstrates that future compilation and performance engineering tools can be augmented with datadriven approaches to improve their performance and portability, while minimizing developer effort," the paper concludes.

Read the original here:
Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register

How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | – Hotel Technology News

Every hotel should ask the same question. How will our property use machine learning? Its not just a matter of gaining a competitive advantage; its imperative in order to stay in business.By Jason G. Bryant, Founder and CEO, Nor1 - 1.9.2020

Artificial intelligence (AI) implementation has grown 270% over the past four years and 37% in the past year alone, according to Gartners 2019 CIO Survey of more than 3,000 executives. About the ubiquity of AI and machine learning (ML) Gartner VP Chris Howard notes, If you are a CIO and your organization doesnt use AI, chances are high that your competitors do and this should be a concern, (VentureBeat). Hotels may not have CIOs, but any business not seriously considering the implications of ML throughout the organization will find itself in multiple binds, from the inability to offer next-level guest service to operational inefficiencies.

Amazon is the poster child for a sophisticated company that is committed to machine learning both in offers (personalized commerce) as well as behind the scenes in their facilities. Amazon Founder & CEO Jeff Bezos attributes much of Amazons ongoing financial success and competitive dominance to machine learning. Further, he has suggested that the entire future of the company rests on how well it uses AI. However, as Forbes contributor Kathleen Walsh notes, There is no single AI group at Amazon. Rather, every team is responsible for finding ways to utilize AI and ML in their work. It is common knowledge that all senior executives at Amazon plan, write, and adhere to a six-page business plan. A piece of every business plan for every business function is devoted to answering the question: How will you utilize machine learning this year?

Every hotel should ask the same question. How will our property use machine learning? Its not just a matter of gaining a competitive advantage; its imperative in order to stay in business. In the 2017 Deloitte State of Cognitive Survey, which canvassed 1,500 mostly C-level executives, not a single survey respondent believed that cognitive technologies would not drive substantive change. Put more simply: every executive in every industry knows that AI is fundamentally changing the way we do business, both in services/products as well as operations. Further, 94% reported that artificial intelligence would substantially transform their companies within five years, most believing the transformation would occur by 2020.

Playing catch-up with this technology can be competitively dangerous as there is significant time between outward-facing results (when you realize your competition is outperforming you) and how long it will take you to achieve similar results and employ a productive, successful strategy. Certainly, revenue management and pricing will be optimized by ML, but operations, guest service, maintenance, loyalty, development, energy usage, and almost every single aspect of the hospitality enterprise will be impacted as well. Any facility where the speed and precision of tactical decision making can be improved will be positively impacted.

Hotels are quick to think that when ML means robotic housekeepers and facial recognition kiosks. While these are possibilities, ML can do so much more. Here are just a few of the ways hotels are using AI to save money, improve service, and become more efficient.

Hiltons Energy Program

The LightStay program at Hilton predicts energy, water, and waste usage and costs. The company can track actual consumption against predictive models, which allows them to manage year-over-year performance as well as performance against competitors. Further, some hotel brands can link in-room energy to the PMS so that when a room is empty, the air conditioner automatically turns off. The future of sustainability in the hospitality industry relies on ML to shave every bit off of energy usage and budget. For brands with hundreds and thousands of properties, every dollar saved on energy can affect the bottom line in a big way.

IHG & Human Resources

IHG employs 400,000 people across 5,723 hotels. Holding fast to the idea that the ideal guest experience begins with staff, IHG implemented AI strategies tofind the right team member who would best align and fit with each of the distinct brand personalities, notes Hazel Hogben, Head of HR, Hotel Operations, IHG Europe. To create brand personas and algorithms, IHG assessed its top customer-facing senior managers across brands using cognitive, emotional, and personality assessments. They then correlated this with KPI and customer data. Finally, this was cross-referenced with values at the different brands. The algorithms are used to create assessments to test candidates for hire against the personas using gamification-based tools, according to The People Space. Hogben notes that in addition to improving the candidate experience (they like the gamification of the experience), it has also helped in eliminating personal or preconceived bias among recruiters. Regarding ML uses for hiring, Harvard Business Review says in addition to combatting human bias by automatically flagging biased language in job descriptions, ML also identifies highly qualified candidates who might have been overlooked because they didnt fit traditional expectations.

Accor Hotels Upgrades

A 2018 study showed that 70% of hotels say they never or only sometimes promote upgrades or upsells at check-in (PhocusWire). In an effort to maximize the value of premium inventory and increase guest satisfaction, Accor Hotels partnered with Nor1 to implement eStandby Upgrade. With the ML-powered technology, Accor Hotels offers guests personalized upgrades based on previous guest behavior at a price that the guest has shown a demonstrated willingness to pay at booking and during the pre-arrival period, up to 24 hours before check-in. This allows the brand to monetize and leverage room features that cant otherwise be captured by standard room category definitions and to optimize the allocation of inventory available on the day of arrival. ML technology can create offers at any point during the guest pathway, including the front desk. Rather than replacing agents as some hotels fear, it helps them make better, quicker decisions about what to offer guests.

Understanding Travel Reviews

The luxury Dorchester Collection wanted to understand what makes their high-end guests tick. Instead of using the traditional secret shopper methods, which dont tell hotels everything they need to know about their experience, Dorchester Collection opted to analyze traveler feedback from across major review sites using ML. Much to their surprise, they discovered Dorchesters guests care a great deal more about breakfast than they thought. They also learned that guests want to customize breakfast, so they removed the breakfast menu and allowed guests to order whatever they like. As it turns out, guests love this.

In his May 2019 Google I/O Address, Google CEO Sundar Pichai said, Thanks to advances in AI, Google is moving beyond its core mission of organizing the worlds information. We are moving from a company that helps you find answers to a company that helps you get things done (ZDNet). Pichai has long held that we no longer live in a mobile-first world; we now inhabit an AI-first world. Businesses must necessarily pivot with this shift, evolving processes and products, sometimes evolving the business model, as in Googles case.

Hotels that embrace ML across operations will find that the technologies improve processes in substantive ways. ML improves the guest experience and increases revenue with precision decisioning and analysis across finance, human resources, marketing, pricing and merchandising, and guest services. Though the Hiltons, Marriotts, and IHGs of the hotel world are at the forefront of adoption, ML technologies are accessibleboth in price and implementationfor the full range of properties. The time has come to ask every hotel department: How will you use AI this year?

For more about Machine Learning and the impact on the hotel industry, download NOR1s ebook The Hospitality Executives Guide to Machine Learning: Will You Be a Leader, Follower, or Dinosaur?

Jason G. Bryant, Nor1 Founder and CEO, oversees day-to-day operations, provides visionary leadership and strategic direction for the upsell technology company. With Jason at the helm, Nor1 has matured into the technology leader in upsell solutions. Headquartered in Silicon Valley, Nor1 provides innovative revenue enhancement solutions to the hospitality industry that focus on the intersection of machine learning, guest engagement and operational efficiency. A seasoned entrepreneur, Jason has over 25 years experience building and leading international software development and operations organizations.

Related

Read the rest here:
How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News