Archive for the ‘Machine Learning’ Category

Machine learning – Wikipedia

Scientific study of algorithms and statistical models that computer systems use to perform tasks without explicit instructions

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2 Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.

Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning.[3][4] In its application across business problems, machine learning is also referred to as predictive analytics.

The name machine learning was coined in 1959 by Arthur Samuel.[5] Tom M. Mitchell provided a widely quoted, more formal definition of the algorithms studied in the machine learning field: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."[6] This definition of the tasks in which machine learning is concerned offers a fundamentally operational definition rather than defining the field in cognitive terms. This follows Alan Turing's proposal in his paper "Computing Machinery and Intelligence", in which the question "Can machines think?" is replaced with the question "Can machines do what we (as thinking entities) can do?".[7] In Turing's proposal the various characteristics that could be possessed by a thinking machine and the various implications in constructing one are exposed.

Machine learning tasks are classified into several broad categories. In supervised learning, the algorithm builds a mathematical model from a set of data that contains both the inputs and the desired outputs. For example, if the task were determining whether an image contained a certain object, the training data for a supervised learning algorithm would include images with and without that object (the input), and each image would have a label (the output) designating whether it contained the object. In special cases, the input may be only partially available, or restricted to special feedback.[clarification needed] Semi-supervised learning algorithms develop mathematical models from incomplete training data, where a portion of the sample input doesn't have labels.

Classification algorithms and regression algorithms are types of supervised learning. Classification algorithms are used when the outputs are restricted to a limited set of values. For a classification algorithm that filters emails, the input would be an incoming email, and the output would be the name of the folder in which to file the email. For an algorithm that identifies spam emails, the output would be the prediction of either "spam" or "not spam", represented by the Boolean values true and false. Regression algorithms are named for their continuous outputs, meaning they may have any value within a range. Examples of a continuous value are the temperature, length, or price of an object.

In unsupervised learning, the algorithm builds a mathematical model from a set of data that contains only inputs and no desired output labels. Unsupervised learning algorithms are used to find structure in the data, like grouping or clustering of data points. Unsupervised learning can discover patterns in the data, and can group the inputs into categories, as in feature learning. Dimensionality reduction is the process of reducing the number of "features", or inputs, in a set of data.

Active learning algorithms access the desired outputs (training labels) for a limited set of inputs based on a budget and optimize the choice of inputs for which it will acquire training labels. When used interactively, these can be presented to a human user for labeling. Reinforcement learning algorithms are given feedback in the form of positive or negative reinforcement in a dynamic environment and are used in autonomous vehicles or in learning to play a game against a human opponent.[2]:3 Other specialized algorithms in machine learning include topic modeling, where the computer program is given a set of natural language documents and finds other documents that cover similar topics. Machine learning algorithms can be used to find the unobservable probability density function in density estimation problems. Meta learning algorithms learn their own inductive bias based on previous experience. In developmental robotics, robot learning algorithms generate their own sequences of learning experiences, also known as a curriculum, to cumulatively acquire new skills through self-guided exploration and social interaction with humans. These robots use guidance mechanisms such as active learning, maturation, motor synergies, and imitation.[clarification needed]

Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning" in 1959 while at IBM.[8] A representative book of the machine learning research during the 1960s was the Nilsson's book on Learning Machines, dealing mostly with machine learning for pattern classification.[9] The interest of machine learning related to pattern recognition continued during the 1970s, as described in the book of Duda and Hart in 1973. [10] In 1981 a report was given on using teaching strategies so that a neural network learns to recognize 40 characters (26 letters, 10 digits, and 4 special symbols) from a computer terminal. [11] As a scientific endeavor, machine learning grew out of the quest for artificial intelligence. Already in the early days of AI as an academic discipline, some researchers were interested in having machines learn from data. They attempted to approach the problem with various symbolic methods, as well as what were then termed "neural networks"; these were mostly perceptrons and other models that were later found to be reinventions of the generalized linear models of statistics.[12] Probabilistic reasoning was also employed, especially in automated medical diagnosis.[13]:488

However, an increasing emphasis on the logical, knowledge-based approach caused a rift between AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation.[13]:488 By 1980, expert systems had come to dominate AI, and statistics was out of favor.[14] Work on symbolic/knowledge-based learning did continue within AI, leading to inductive logic programming, but the more statistical line of research was now outside the field of AI proper, in pattern recognition and information retrieval.[13]:708710; 755 Neural networks research had been abandoned by AI and computer science around the same time. This line, too, was continued outside the AI/CS field, as "connectionism", by researchers from other disciplines including Hopfield, Rumelhart and Hinton. Their main success came in the mid-1980s with the reinvention of backpropagation.[13]:25

Machine learning, reorganized as a separate field, started to flourish in the 1990s. The field changed its goal from achieving artificial intelligence to tackling solvable problems of a practical nature. It shifted focus away from the symbolic approaches it had inherited from AI, and toward methods and models borrowed from statistics and probability theory.[14] It also benefited from the increasing availability of digitized information, and the ability to distribute it via the Internet.

Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases). Data mining uses many machine learning methods, but with different goals; on the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a preprocessing step to improve learner accuracy. Much of the confusion between these two research communities (which do often have separate conferences and separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, while in knowledge discovery and data mining (KDD) the key task is the discovery of previously unknown knowledge. Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed by other supervised methods, while in a typical KDD task, supervised methods cannot be used due to the unavailability of training data.

Machine learning also has intimate ties to optimization: many learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions express the discrepancy between the predictions of the model being trained and the actual problem instances (for example, in classification, one wants to assign a label to instances, and models are trained to correctly predict the pre-assigned labels of a set of examples). The difference between the two fields arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.[15]

Machine learning and statistics are closely related fields in terms of methods, but distinct in their principal goal: statistics draws population inferences from a sample, while machine learning finds generalizable predictive patterns.[16] According to Michael I. Jordan, the ideas of machine learning, from methodological principles to theoretical tools, have had a long pre-history in statistics.[17] He also suggested the term data science as a placeholder to call the overall field.[17]

Leo Breiman distinguished two statistical modeling paradigms: data model and algorithmic model,[18] wherein "algorithmic model" means more or less the machine learning algorithms like Random forest.

Some statisticians have adopted methods from machine learning, leading to a combined field that they call statistical learning.[19]

A core objective of a learner is to generalize from its experience.[2][20] Generalization in this context is the ability of a learning machine to perform accurately on new, unseen examples/tasks after having experienced a learning data set. The training examples come from some generally unknown probability distribution (considered representative of the space of occurrences) and the learner has to build a general model about this space that enables it to produce sufficiently accurate predictions in new cases.

The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the performance of algorithms. Instead, probabilistic bounds on the performance are quite common. The biasvariance decomposition is one way to quantify generalization error.

For the best performance in the context of generalization, the complexity of the hypothesis should match the complexity of the function underlying the data. If the hypothesis is less complex than the function, then the model has under fitted the data. If the complexity of the model is increased in response, then the training error decreases. But if the hypothesis is too complex, then the model is subject to overfitting and generalization will be poorer.[21]

In addition to performance bounds, learning theorists study the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in polynomial time.

The types of machine learning algorithms differ in their approach, the type of data they input and output, and the type of task or problem that they are intended to solve.

Supervised learning algorithms build a mathematical model of a set of data that contains both the inputs and the desired outputs.[22] The data is known as training data, and consists of a set of training examples. Each training example has one or more inputs and the desired output, also known as a supervisory signal. In the mathematical model, each training example is represented by an array or vector, sometimes called a feature vector, and the training data is represented by a matrix. Through iterative optimization of an objective function, supervised learning algorithms learn a function that can be used to predict the output associated with new inputs.[23] An optimal function will allow the algorithm to correctly determine the output for inputs that were not a part of the training data. An algorithm that improves the accuracy of its outputs or predictions over time is said to have learned to perform that task.[6]

Supervised learning algorithms include classification and regression.[24] Classification algorithms are used when the outputs are restricted to a limited set of values, and regression algorithms are used when the outputs may have any numerical value within a range. Similarity learning is an area of supervised machine learning closely related to regression and classification, but the goal is to learn from examples using a similarity function that measures how similar or related two objects are. It has applications in ranking, recommendation systems, visual identity tracking, face verification, and speaker verification.

In the case of semi-supervised learning algorithms, some of the training examples are missing training labels, but they can nevertheless be used to improve the quality of a model. In weakly supervised learning, the training labels are noisy, limited, or imprecise; however, these labels are often cheaper to obtain, resulting in larger effective training sets.[25]

Unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data, like grouping or clustering of data points. The algorithms, therefore, learn from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning algorithms identify commonalities in the data and react based on the presence or absence of such commonalities in each new piece of data. A central application of unsupervised learning is in the field of density estimation in statistics,[26] though unsupervised learning encompasses other domains involving summarizing and explaining data features.

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that observations within the same cluster are similar according to one or more predesignated criteria, while observations drawn from different clusters are dissimilar. Different clustering techniques make different assumptions on the structure of the data, often defined by some similarity metric and evaluated, for example, by internal compactness, or the similarity between members of the same cluster, and separation, the difference between clusters. Other methods are based on estimated density and graph connectivity.

Semi-supervised Learning

Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled data, can produce a considerable improvement in learning accuracy.

Reinforcement learning is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Due to its generality, the field is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics and genetic algorithms. In machine learning, the environment is typically represented as a Markov Decision Process (MDP). Many reinforcement learning algorithms use dynamic programming techniques.[27] Reinforcement learning algorithms do not assume knowledge of an exact mathematical model of the MDP, and are used when exact models are infeasible. Reinforcement learning algorithms are used in autonomous vehicles or in learning to play a game against a human opponent.

Self-learning as machine learning paradigm was introduced in 1982 along with a neural network capable of self-learning named Crossbar Adaptive Array (CAA). [28] It is a learning with no external rewards and no external teacher advices. The CAA self-learning algorithm computes, in a crossbar fashion, both decisions about actions and emotions (feelings) about consequence situations. The system is driven by the interaction between cognition and emotion. [29]The self-learning algorithm updates a memory matrix W =||w(a,s)|| such that in each iteration executes the following machine learning routine:

It is a system with only one input, situation s, and only one output, action (or behavior) a. There is neither a separate reinforcement input nor an advice input from the environment. The backpropagated value (secondary reinforcement) is the emotion toward the consequence situation. The CAA exists in two environments, one is behavioral environment where it behaves, and the other is genetic environment, wherefrom it initially and only once receives initial emotions about situations to be encountered in the behavioral environment. After receiving the genome (species) vector from the genetic environment, the CAA learns a goal seeking behavior, in an environment that contains both desirable and undesirable situations. [30]

Several learning algorithms aim at discovering better representations of the inputs provided during training.[31] Classic examples include principal components analysis and cluster analysis. Feature learning algorithms, also called representation learning algorithms, often attempt to preserve the information in their input but also transform it in a way that makes it useful, often as a pre-processing step before performing classification or predictions. This technique allows reconstruction of the inputs coming from the unknown data-generating distribution, while not being necessarily faithful to configurations that are implausible under that distribution. This replaces manual feature engineering, and allows a machine to both learn the features and use them to perform a specific task.

Feature learning can be either supervised or unsupervised. In supervised feature learning, features are learned using labeled input data. Examples include artificial neural networks, multilayer perceptrons, and supervised dictionary learning. In unsupervised feature learning, features are learned with unlabeled input data. Examples include dictionary learning, independent component analysis, autoencoders, matrix factorization[32] and various forms of clustering.[33][34][35]

Manifold learning algorithms attempt to do so under the constraint that the learned representation is low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned representation is sparse, meaning that the mathematical model has many zeros. Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into higher-dimensional vectors.[36] Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain the observed data.[37]

Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensory data has not yielded to attempts to algorithmically define specific features. An alternative is to discover such features or representations through examination, without relying on explicit algorithms.

Sparse dictionary learning is a feature learning method where a training example is represented as a linear combination of basis functions, and is assumed to be a sparse matrix. The method is strongly NP-hard and difficult to solve approximately.[38] A popular heuristic method for sparse dictionary learning is the K-SVD algorithm. Sparse dictionary learning has been applied in several contexts. In classification, the problem is to determine the class to which a previously unseen training example belongs. For a dictionary where each class has already been built, a new training example is associated with the class that is best sparsely represented by the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.[39]

In data mining, anomaly detection, also known as outlier detection, is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.[40] Typically, the anomalous items represent an issue such as bank fraud, a structural defect, medical problems or errors in a text. Anomalies are referred to as outliers, novelties, noise, deviations and exceptions.[41]

In particular, in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier detection methods (in particular, unsupervised algorithms) will fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro-clusters formed by these patterns.[42]

Three broad categories of anomaly detection techniques exist.[43] Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal, by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to many other statistical classification problems is the inherently unbalanced nature of outlier detection). Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal training data set and then test the likelihood of a test instance to be generated by the model.

Association rule learning is a rule-based machine learning method for discovering relationships between variables in large databases. It is intended to identify strong rules discovered in databases using some measure of "interestingness".[44]

Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves "rules" to store, manipulate or apply knowledge. The defining characteristic of a rule-based machine learning algorithm is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learning algorithms that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.[45] Rule-based machine learning approaches include learning classifier systems, association rule learning, and artificial immune systems.

Based on the concept of strong rules, Rakesh Agrawal, Tomasz Imieliski and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets.[46] For example, the rule { o n i o n s , p o t a t o e s } { b u r g e r } {displaystyle {mathrm {onions,potatoes} }Rightarrow {mathrm {burger} }} found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are likely to also buy hamburger meat. Such information can be used as the basis for decisions about marketing activities such as promotional pricing or product placements. In addition to market basket analysis, association rules are employed today in application areas including Web usage mining, intrusion detection, continuous production, and bioinformatics. In contrast with sequence mining, association rule learning typically does not consider the order of items either within a transaction or across transactions.

Learning classifier systems (LCS) are a family of rule-based machine learning algorithms that combine a discovery component, typically a genetic algorithm, with a learning component, performing either supervised learning, reinforcement learning, or unsupervised learning. They seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions.[47]

Inductive logic programming (ILP) is an approach to rule-learning using logic programming as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive programming is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as functional programs.

Inductive logic programming is particularly useful in bioinformatics and natural language processing. Gordon Plotkin and Ehud Shapiro laid the initial theoretical foundation for inductive machine learning in a logical setting.[48][49][50] Shapiro built their first implementation (Model Inference System) in 1981: a Prolog program that inductively inferred logic programs from positive and negative examples.[51] The term inductive here refers to philosophical induction, suggesting a theory to explain observed facts, rather than mathematical induction, proving a property for all members of a well-ordered set.

Performing machine learning involves creating a model, which is trained on some training data and then can process additional data to make predictions. Various types of models have been used and researched for machine learning systems.

Artificial neural networks (ANNs), or connectionist systems, are computing systems vaguely inspired by the biological neural networks that constitute animal brains. Such systems "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules.

An ANN is a model based on a collection of connected units or nodes called "artificial neurons", which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit information, a "signal", from one artificial neuron to another. An artificial neuron that receives a signal can process it and then signal additional artificial neurons connected to it. In common ANN implementations, the signal at a connection between artificial neurons is a real number, and the output of each artificial neuron is computed by some non-linear function of the sum of its inputs. The connections between artificial neurons are called "edges". Artificial neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Artificial neurons may have a threshold such that the signal is only sent if the aggregate signal crosses that threshold. Typically, artificial neurons are aggregated into layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first layer (the input layer) to the last layer (the output layer), possibly after traversing the layers multiple times.

The original goal of the ANN approach was to solve problems in the same way that a human brain would. However, over time, attention moved to performing specific tasks, leading to deviations from biology. Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.

Deep learning consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision and speech recognition.[52]

Decision tree learning uses a decision tree as a predictive model to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). It is one of the predictive modeling approaches used in statistics, data mining and machine learning. Tree models where the target variable can take a discrete set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data, but the resulting classification tree can be an input for decision making.

Support vector machines (SVMs), also known as support vector networks, are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.[53] An SVM training algorithm is a non-probabilistic, binary, linear classifier, although methods such as Platt scaling exist to use SVM in a probabilistic classification setting. In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.

Regression analysis encompasses a large variety of statistical methods to estimate the relationship between input variables and their associated features. Its most common form is linear regression, where a single line is drawn to best fit the given data according to a mathematical criterion such as ordinary least squares. The latter is oftentimes extended by regularization (mathematics) methods to mitigate overfitting and high bias, as can be seen in ridge regression. When dealing with non-linear problems, go-to models include polynomial regression (e.g. used for trendline fitting in Microsoft Excel [54]), Logistic regression (often used in statistical classification) or even kernel regression, which introduces non-linearity by taking advantage of the kernel trick to implicitly map input variables to higher dimensional space.

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional independence with a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms exist that perform inference and learning. Bayesian networks that model sequences of variables, like speech signals or protein sequences, are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams.

A genetic algorithm (GA) is a search algorithm and heuristic technique that mimics the process of natural selection, using methods such as mutation and crossover to generate new genotypes in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms were used in the 1980s and 1990s.[55][56] Conversely, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.[57]

Usually, machine learning models require a lot of data in order for them to perform well. Usually, when training a machine learning model, one needs to collect a large, representative sample of data from a training set. Data from the training set can be as varied as a corpus of text, a collection of images, and data collected from individual users of a service. Overfitting is something to watch out for when training a machine learning model.

Federated learning is a new approach to training machine learning models that decentralizes the training process, allowing for users' privacy to be maintained by not needing to send their data to a centralized server. This also increases efficiency by decentralizing the training process to many devices. For example, Gboard uses federated machine learning to train search query prediction models on users' mobile phones without having to send individual searches back to Google.[58]

There are many applications for machine learning, including:

In 2006, the media-services provider Netflix held the first "Netflix Prize" competition to find a program to better predict user preferences and improve the accuracy on its existing Cinematch movie recommendation algorithm by at least 10%. A joint team made up of researchers from AT&T Labs-Research in collaboration with the teams Big Chaos and Pragmatic Theory built an ensemble model to win the Grand Prize in 2009 for $1million.[59] Shortly after the prize was awarded, Netflix realized that viewers' ratings were not the best indicators of their viewing patterns ("everything is a recommendation") and they changed their recommendation engine accordingly.[60] In 2010 The Wall Street Journal wrote about the firm Rebellion Research and their use of machine learning to predict the financial crisis.[61] In 2012, co-founder of Sun Microsystems, Vinod Khosla, predicted that 80% of medical doctors' jobs would be lost in the next two decades to automated machine learning medical diagnostic software.[62] In 2014, it was reported that a machine learning algorithm had been applied in the field of art history to study fine art paintings, and that it may have revealed previously unrecognized influences among artists.[63] In 2019 Springer Nature published the first research book created using machine learning.[64]

Although machine learning has been transformative in some fields, machine-learning programs often fail to deliver expected results.[65][66][67] Reasons for this are numerous: lack of (suitable) data, lack of access to the data, data bias, privacy problems, badly chosen tasks and algorithms, wrong tools and people, lack of resources, and evaluation problems.[68]

In 2018, a self-driving car from Uber failed to detect a pedestrian, who was killed after a collision.[69] Attempts to use machine learning in healthcare with the IBM Watson system failed to deliver even after years of time and billions of investment.[70][71]

Machine learning approaches in particular can suffer from different data biases. A machine learning system trained on current customers only may not be able to predict the needs of new customer groups that are not represented in the training data. When trained on man-made data, machine learning is likely to pick up the same constitutional and unconscious biases already present in society.[72] Language models learned from data have been shown to contain human-like biases.[73][74] Machine learning systems used for criminal risk assessment have been found to be biased against black people.[75][76] In 2015, Google photos would often tag black people as gorillas,[77] and in 2018 this still was not well resolved, but Google reportedly was still using the workaround to remove all gorillas from the training data, and thus was not able to recognize real gorillas at all.[78] Similar issues with recognizing non-white people have been found in many other systems.[79] In 2016, Microsoft tested a chatbot that learned from Twitter, and it quickly picked up racist and sexist language.[80] Because of such challenges, the effective use of machine learning may take longer to be adopted in other domains.[81] Concern for fairness in machine learning, that is, reducing bias in machine learning and propelling its use for human good is increasingly expressed by artificial intelligence scientists, including Fei-Fei Li, who reminds engineers that "Theres nothing artificial about AI...Its inspired by people, its created by people, andmost importantlyit impacts people. It is a powerful tool we are only just beginning to understand, and that is a profound responsibility.[82]

Classification machine learning models can be validated by accuracy estimation techniques like the Holdout method, which splits the data in a training and test set (conventionally 2/3 training set and 1/3 test set designation) and evaluates the performance of the training model on the test set. In comparison, the K-fold-cross-validation method randomly partitions the data into K subsets and then K experiments are performed each respectively considering 1 subset for evaluation and the remaining K-1 subsets for training the model. In addition to the holdout and cross-validation methods, bootstrap, which samples n instances with replacement from the dataset, can be used to assess model accuracy.[83]

In addition to overall accuracy, investigators frequently report sensitivity and specificity meaning True Positive Rate (TPR) and True Negative Rate (TNR) respectively. Similarly, investigators sometimes report the False Positive Rate (FPR) as well as the False Negative Rate (FNR). However, these rates are ratios that fail to reveal their numerators and denominators. The Total Operating Characteristic (TOC) is an effective method to express a model's diagnostic ability. TOC shows the numerators and denominators of the previously mentioned rates, thus TOC provides more information than the commonly used Receiver Operating Characteristic (ROC) and ROC's associated Area Under the Curve (AUC).[84]

Machine learning poses a host of ethical questions. Systems which are trained on datasets collected with biases may exhibit these biases upon use (algorithmic bias), thus digitizing cultural prejudices.[85] For example, using job hiring data from a firm with racist hiring policies may lead to a machine learning system duplicating the bias by scoring job applicants against similarity to previous successful applicants.[86][87] Responsible collection of data and documentation of algorithmic rules used by a system thus is a critical part of machine learning.

Because human languages contain biases, machines trained on language corpora will necessarily also learn these biases.[88][89]

Other forms of ethical challenges, not related to personal biases, are more seen in health care. There are concerns among health care professionals that these systems might not be designed in the public's interest but as income-generating machines. This is especially true in the United States where there is a perpetual ethical dilemma of improving health care, but also increase profits. For example, the algorithms could be designed to provide patients with unnecessary tests or medication in which the algorithm's proprietary owners hold stakes in. There is huge potential for machine learning in health care to provide professionals a great tool to diagnose, medicate, and even plan recovery paths for patients, but this will not happen until the personal biases mentioned previously, and these "greed" biases are addressed.[90]

Software suites containing a variety of machine learning algorithms include the following:

Continue reading here:

Machine learning - Wikipedia

What Is Machine Learning? | How It Works, Techniques …

Supervised Learning

Supervised machine learning builds a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Use supervised learning if you have known data for the output you are trying to predict.

Supervised learning uses classification and regression techniques to develop predictive models.

Classification techniques predict discrete responsesfor example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, speech recognition, and credit scoring.

Use classification if your data can be tagged, categorized, or separated into specific groups or classes. For example, applications for hand-writing recognition use classification to recognize letters and numbers. In image processing and computer vision, unsupervised pattern recognition techniques are used for object detection and image segmentation.

Common algorithms for performing classification include support vector machine (SVM), boosted and bagged decision trees, k-nearest neighbor, Nave Bayes, discriminant analysis, logistic regression, and neural networks.

Regression techniques predict continuous responsesfor example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading.

Use regression techniques if you are working with a data range or if the nature of your response is a real number, such as temperature or the time until failure for a piece of equipment.

Common regression algorithms include linear model, nonlinear model, regularization, stepwise regression, boosted and bagged decision trees, neural networks, and adaptive neuro-fuzzy learning.

Original post:

What Is Machine Learning? | How It Works, Techniques ...

CMSWire’s Top 10 AI and Machine Learning Articles of 2019 – CMSWire

PHOTO: tiffany terry

Would you believe me if I told you artificial intelligence (AI) wrote this article?

With 2020 on the horizon, and with all the progress made in AI and machine learning (ML) already, it probably wouldnt surprise you if that were indeed the case which is bad news for writers like me (or not).

As we transition into a new year, its worth noting that 73% of global consumers say they are open to businesses using AI if it makes life easier, and 83% of businesses say that AI is a strategic priority for their businesses already. If thats not a recipe for even more progress in 2020 and beyond, then my name isnt CMSWire-Bot-927.

Today, were looking back at the AI and ML articles which resonated with CMSWire's audience in 2019. Strap yourself in, because this list is about to blast you into the future.

ML and, more broadly, AI have become the tech industry's most important trends over the past 18 months. And despite the hype and, to some extent, fear surrounding the technology, many businesses are now embracing AI at an impressive speed.

Despite this progress, many of the pilot schemes are still highly experimental, and some organizations are struggling to understand how they can really embrace the technology.

As the business world grapples with the potential of AI and machine learning, new ethical challenges arise on a regular basis related to its use.

One area where tensions are being played out is in talent management: a struggle between relying on human expertise or in deferring decisions to machines so as to better understand employee needs, skills and career potential.

Marketing technology has evolved rapidly over the past decade, with one of the most exciting developments being the creation of publicly-available, cost-effective cognitive APIs by companies like Microsoft, IBM, Alphabet, Amazon and others. These APIs make it possible for businesses and organizations to tap into AI and ML technology for both customer-facing solutions as well as internal operations.

The workplace chatbots are coming! The workplace chatbots are coming!

OK, well, theyre already here. And in a few years, there will be even more. According to Gartner, by 2021 the daily use ofvirtual assistants in the workplacewill climb to 25%. That will be up from less than 2% this year.Gartneralso identified a workplace chatbot landscape of more than 1,000 vendors, so choosing a workplace chatbot wont be easy. IT leaders need to determine the capabilities they need from such a platform in the short term and select a vendor on that basis, according to Gartner.

High-quality metadata plays an outsized role in improving enterprise search results. But convincing people to consistently apply quality metadata has been an uphill battle for most companies. One solution that has been around for a long time now is to automate metadata's creation, using rules-based content auto-classification products.

Although enterprise interest in bots seems to be at an all-time high,Gartner reports that 68%of customer service leaders believe bots and virtual assistants will become even more important in the next two years. As bots are called upon to perform a greater range of tasks, chatbots will increasingly rely on back-office bots to find information and complete transactions on behalf of customers.

If digital workplaces are being disrupted by the ongoing development of AI driven apps, by 2021 those disruptors could end up in their turn being disrupted. The emergence of a new form of AI, or a second wave of AI, known as augmented AI is so significant Gartner predicts that by 2021 it will be creating up to $2.9 trillion of business value and 6.2 billion hours of worker productivity globally.

AI and ML took center stage at IBM Think this year, the shows major AI announcements served as a reminder that the company has some of the most differentiated and competitive services for implementing AI in enterprise operational processes in the market. But if Big Blue is to win the AI race against AWS, Microsoft and Google Cloud in 2019 and beyond, it must improve its developer strategy and strengthen its communications, especially in areas such as trusted AI and governance

Sentiment analysis is the kind of tool a marketer dreams about. By gauging the publics opinion of an event or product through analysis of data on a scale no human could achieve, it gives your team the ability to figure out what people really think. Backed by a growing body of innovative research, sentiment-analysis tools have the ability to dramatically improve your ROI yet many companies are overlooking it.

Pop quiz: Can you define the differences between AI and automation?

I wont judge you if the answer is no. There's a blurry line between AI and automation, with the terms often used interchangeably, even in tech-forward professions. But there's a very real difference between the two and its one thats becoming evermore critical for organizations to understand.

See the original post:

CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire

Are We Overly Infatuated With Deep Learning? – Forbes

Deep Learning

One of the factors often credited for this latest boom in artificial intelligence (AI) investment, research, and related cognitive technologies, is the emergence of deep learning neural networks as an evolution of machine algorithms, as well as the corresponding large volume of big data and computing power that makes deep learning a practical reality. While deep learning has been extremely popular and has shown real ability to solve many machine learning problems, deep learning is just one approach to machine learning (ML), that while having proven much capability across a wide range of problem areas, is still just one of many practical approaches. Increasingly, were starting to see news and research showing the limits of deep learning capabilities, as well as some of the downsides to the deep learning approach. So are peoples enthusiasm of AI tied to their enthusiasm of deep learning, and is deep learning really able to deliver on many of its promises?

The Origins of Deep Learning

AI researchers have struggled to understand how the brain learns from the very beginnings of the development of the field of artificial intelligence. It comes as no surprise that since the brain is primarily a collection of interconnected neurons, AI researchers sought to recreate the way the brain is structured through artificial neurons, and connections of those neurons in artificial neural networks. All the way back in 1940, Walter Pitts and Warren McCulloch built the first thresholded logic unit that was an attempt to mimic the way biological neurons worked. The Pitts and McCulloch model was just a proof of concept, but Frank Rosenblatt picked up on the idea in 1957 with the development of the Perceptron that took the concept to its logical extent. While primitive by todays standards, the Perceptron was still capable of remarkable feats - being able to recognize written numbers and letters, and even distinguish male from female faces. That was over 60 years ago!

Rosenblatt was so enthusiastic in 1959 about the Perceptrons promises that he remarked at the time that the perceptron is the embryo of an electronic computer that [we expect] will be able to walk, talk, see, write, reproduce itself and be conscious of its existence. Sound familiar? However, the enthusiasm didnt last. AI researcher Marvin Minsky noted how sensitive the perceptron was to small changes in the images, and also how easily it could be fooled. Maybe the perceptron wasnt really that smart at all. Minsky and AI researcher peer Seymour Papert basically took apart the whole perceptron idea in their Perceptrons book, and made the claim that perceptrons, and neural networks like it, are fundamentally flawed in their inability to handle certain kinds of problems notably, non-linear functions. That is to say, it was easy to train a neural network like a perceptron to put data into classifications, such as male/female, or types of numbers. For these simple neural networks, you can graph a bunch of data and draw a line and say things on one side of the line are in one category and things on the other side of the line are in a different category, thereby classifying them. But theres a whole bunch of problems where you cant draw lines like this, such as speech recognition or many forms of decision-making. These are nonlinear functions, which Minsky and Papert proved perceptrons incapable of solving.

During this period, while neural network approaches to ML settled to become an afterthought in AI, other approaches to ML were in the limelight including knowledge graphs, decision trees, genetic algorithms, similarity models, and other methods. In fact, during this period, IBMs DeepBlue purpose-built AI computer defeated Gary Kasparov in a chess match, the first computer to do so, using a brute-force alpha-beta search algorithm (so-called Good Old-Fashioned AI [GOFAI]) rather than new-fangled deep learning approaches. Yet, even this approach to learning didnt go far, as some said that this system wasnt even intelligent at all.

Yet, the neural network story doesnt end here. In 1986, AI researcher Geoff Hinton, along with David Rumelhart and Ronald Williams, published a research paper entitled Learning representations by back-propagating errors. In this paper, Hinton and crew detailed how you can use many hidden layers of neurons to get around the problems faced by perceptrons. With sufficient data and computing power, these layers can be calculated to identify specific features in the data sets they can classify on, and as a group, could learn nonlinear functions, something known as the universal approximation theorem. The approach works by backpropagating errors from higher layers of the network to lower ones (backprop), expediting training. Now, if you have enough layers, enough data to train those layers, and sufficient computing power to calculate all the interconnections, you can train a neural network to identify and classify almost anything. Researcher Yann Lecun developed LeNet-5 at AT&T Bell Labs in 1998, recognizing handwritten images on checks using an iteration of this approach known as Convolutional Neural Networks (CNNs), and researchers Yoshua Bengio and Jrgen Schmidhube further advanced the field.

Yet, just as things go in AI, research halted when these early neural networks couldnt scale. Surprisingly very little development happened until 2006, when Hinton re-emerged onto the scene with the ideas of unsupervised pre-training and deep belief nets. The idea here is to have a simple two-layer network whose parameters are trained in an unsupervised way, and then stack new layers on top of it, just training that layers parameters. Repeat for dozens, hundreds, even thousands of layers. Eventually you get a deep network with many layers that can learn and understand something complex. This is what deep learning is all about: using lots of layers of trained neural nets to learn just about anything, at least within certain constraints.

In 2010, Stanford researcher Fei-Fei Li published the release of ImageNet, a large database of millions of labeled images. The images were labeled with a hierarchy of classifications, such as animal or vehicle, down to very granular levels, such as husky or trimaran. This ImageNet database was paired with an annual competition called the Large Scale Visual Recognition Challenge (LSVRC) to see which computer vision system had the lowest number of classification and recognition errors. In 2012, Geoff Hinton, Alex Krizhevsky, and Ilya Sutskever, submitted their AlexNet entry that had almost half the number of errors as all previous winning entries. What made their approach win was that they moved from using ordinary computers with CPUs, to specialized graphical processing units (GPUs) that could train much larger models in reasonable amounts of time. They also introduced now-standard deep learning methods such as dropout to reduce a problem called overfitting (when the network is trained too tightly on the example data and cant generalize to broader data), and something called the rectified linear activation unit (ReLU) to speed training. After the success of their competition, it seems everyone took notice, and Deep Learning was off to the races.

Deep Learnings Shortcomings

The fuel that keeps the Deep Learning fires roaring is data and compute power. Specifically, large volumes of well-labeled data sets are needed to train Deep Learning networks. The more layers, the better the learning power, but to have layers you need to have data that is already well labeled to train those layers. Since deep neural networks are primarily a bunch of calculations that have to all be done at the same time, you need a lot of raw computing power, and specifically numerical computing power. Imagine youre tuning a million knobs at the same time to find the optimal combination that will make the system learn based on millions of pieces of data that are being fed into the system. This is why neural networks in the 1950s were not possible, but today they are. Today we finally have lots of data and lots of computing power to handle that data.

Deep learning is being applied successfully in a wide range of situations, such as natural language processing, computer vision, machine translation, bioinformatics, gaming, and many other applications where classification, pattern matching, and the use of this automatically tuned deep neural network approach works well. However, these same advantages have a number of disadvantages.

The most notable of these disadvantages is that since deep learning consists of many layers, each with many interconnected nodes, each configured with different weights and other parameters theres no way to inspect a deep learning network and understand how any particular decision, clustering, or classification is actually done. Its a black box, which means deep learning networks are inherently unexplainable. As many have written on the topic of Explainable AI (XAI), systems that are used to make decisions of significance need to have explainability to satisfy issues of trust, compliance, verifiability, and understandability. While DARPA and others are working on ways to possibly explain deep learning neural networks, the lack of explainability is a significant drawback for many.

The second disadvantage is that deep learning networks are really great at classification and clustering of information, but not really good at other decision-making or learning scenarios. Not every learning situation is one of classifying something in a category or grouping information together into a cluster. Sometimes you have to deduce what to do based on what youve learned before. Deduction and reasoning is not a fort of deep learning networks.

As mentioned earlier, deep learning is also very data and resource hungry. One measure of a neural networks complexity is the number of parameters that need to be learned and tuned. For deep learning neural networks, there can be hundreds of millions of parameters. Training models requires a significant amount of data to adjust these parameters. For example, a speech recognition neural net often requires terabytes of clean, labeled data to train on. The lack of a sufficient, clean, labeled data set would hinder the development of a deep neural net for that problem domain. And even if you have the data, you need to crunch on it to generate the model, which takes a significant amount of time and processing power.

Another challenge of deep learning is that the models produced are very specific to a problem domain. If its trained on a certain dataset of cats, then it will only recognize those cats and cant be used to generalize on animals or be used to identify non-cats. While this is not a problem of only deep learning approaches to machine learning, it can be particularly troublesome when factoring in the overfitting problem mentioned above. Deep learning neural nets can be so tightly constrained (fitted) to the training data that, for example, even small perturbations in the images can lead to wildly inaccurate classifications of images. There are well known examples of turtles being mis-recognized as guns or polar bears being mis-recognized as other animals due to just small changes in the image data. Clearly if youre using this network in mission critical situations, those mistakes would be significant.

Machine Learning is not (just) Deep Learning

Enterprises looking at using cognitive technologies in their business need to look at the whole picture. Machine learning is not just one approach, but rather a collection of different approaches of various different types that are applicable in different scenarios. Some machine learning algorithms are very simple, using small amounts of data and an understandable logic or deduction path thats very suitable for particular situations, while others are very complex and use lots of data and processing power to handle more complicated situations. The key thing to realize is that deep learning isnt all of machine learning, let alone AI. Even Geoff Hinton, the Einstein of deep learning is starting to rethink core elements of deep learning and its limitations.

The key for organizations is to understand which machine learning methods are most viable for which problem areas, and how to plan, develop, deploy, and manage that machine learning approach in practice. Since AI use in the enterprise is still continuing to gain adoption, especially these more advanced cognitive approaches, the best practices on how to employ cognitive technologies successfully are still maturing.

More:

Are We Overly Infatuated With Deep Learning? - Forbes

Can machine learning take over the role of investors? – TechHQ

As we dive deeper into the Fourth Industrial Revolution, there is no disputing how technology serves as a catalyst for growth and innovation for many businesses across a range of functions and industries.

But one technology that is steadily gaining prominence across organizations includes machine learning (ML).

In the simplest terms, ML is the science of getting computers to learn and act like humans do without being programmed. It is a form of artificial intelligence (AI) and entails feeding machine data, enabling the computer program to learn autonomously and enhance its accuracy in analyzing data.

The proliferation of technology means AI is now commonplace in our daily lives, with its presence in a panoply of things, such as driverless vehicles, facial recognition devices, and in the customer service industry.

Currently, asset managers are exploring the potential that AI/ML systems can bring to the finance industry; close to 60 percent of managers predict that ML will have a medium-to-large impact across businesses.

MLs ability to analyze large data sets and continuously self-develop through trial and error translates to increased speed and better performance in data analysis for financial firms.

For instance, according to the Harvard Business Review, ML can spot potentially outperforming equities by identifying new patterns in existing data sets and examine the collected responses of CEOs in quarterly earnings calls of the S&P 500 companies for the past 20 years.

Following this, ML can then formulate a review of good and bad stocks, thus providing organizations with valuable insights to drive important business decisions. This data also paves the way for the system to assess the trustworthiness of forecasts from specific company leaders and compare the performance of competitors in the industry.

Besides that, ML also has the capacity to analyze various forms of data, including sound and images. In the past, such formats of information were challenging for computers to analyze, but todays ML algorithms can process images faster and better than humans.

For example, analysts use GPS locations from mobile devices to pattern foot traffic at retail hubs or refer to the point of sale data to trace revenues during major holiday seasons. Hence, data analysts can leverage on this technological advancement to identify trends and new areas for investment.

It is evident that ML is full of potential, but it still has some big shoes to fil if it were to replace the role of an investor.

Nishant Kumar aptly explained this in Bloomberg, Financial data is very noisy, markets are not stationary and powerful tools require deep understanding and talent thats hard to get. One quantitative analyst, or quant, estimates the failure rate in live tests at about 90 percent. Man AHL, a quant unit of Man Group, needed three years of workto gain enough confidence in a machine-learning strategy to devote client money to it. It later extended its use to four of its main money pools.

In other words, human talent and supervision are still essential to developing the right algorithm and in exercising sound investment judgment. After all, the purpose of a machine is to automate repetitive tasks. In this context, ML may seek out correlations of data without understanding their underlying rationale.

One ML expert said, his team spends days evaluating if patterns by ML are sensible, predictive, consistent, and additive. Even if a pattern falls in line with all four criteria, it may not bear much significance in supporting profitable investment decisions.

The bottom line is ML can streamline data analysis steps, but it cannot replace human judgment. Thus, active equity managers should invest in ML systems to remain competitive in this innovate or die era. Financial firms that successfully recruit professionals with the right data skills and sharp investment judgment stands to be at the forefront of the digital economy.

See more here:

Can machine learning take over the role of investors? - TechHQ