Archive for the ‘Machine Learning’ Category

Australian Academy of Science Boden Research Conference 2024: Protein Folding: Mechanisms, Health, and Machine … – Australian Academy of Science

Understanding how proteins fold is key to unlocking how cells function and how their structures are built. When proteins fold incorrectly, it can cause cells to malfunction, leading to diseases like Alzheimer's and Parkinson's. Delving into the complexities of protein folding not only enriches our fundamental understanding of biological processes but also paves the way for innovative therapies, and novel drug discoveries.

The 2024 Boden Research Conference aims to bring together a multidisciplinary community of experts to deepen our understanding of protein folding dynamics and propel therapeutic innovation. The conference will assess current knowledge, identify crucial gaps, and guide future research in protein folding and misfolding. The conference will also explore how machine learning can revolutionise the search for new treatments and better diagnosis of diseases.

Join us to discover how the smallest proteins can solve some of our biggest health challenges. Together, we can advance scientific understanding and develop new solutions to combat debilitating diseases.

Date: 25th -26th September, 2024

Time: 8:00am -17:00 pm. A conference dinner will be organised on day one (25th September, 2024) at 18:00 pm

Deadline: Deadline for conference registration is 23:59 13th September, 2024 (AEST) , and deadline for abstract submission is 23:59 15th July, 2024 (AEST).

Cost: Free

Venue:Holmes Building (A09), Science Rd, The University of Sydney, Camperdown NSW 2050, Australia

Program: TBA

Contact: Professor Ken-Tye Yong, The University of Sydney: ken.yong@sydney.edu.au; Dr Morning Liu, The University of Sydney: xiaochen.liu@sydney.edu.au

Read the original post:
Australian Academy of Science Boden Research Conference 2024: Protein Folding: Mechanisms, Health, and Machine ... - Australian Academy of Science

52% of FIs Plan to Lean on ML and AI to Combat Fraud – PYMNTS.com

In the seemingly never-ending war to protect their customers and institutions from fraud, an increasing number of financial institutions (FIs) are deploying machine learning (ML) and artificial intelligence (AI) tools to fight back.

And according to PYMNTS Intelligences Leveraging AI and ML to Thwart Scammers, a report created in collaboration withHawk, those efforts appear to be working.

The report, which is based on surveys with 200 FIs with more than $1 billion in assets under management, revealed that thoseFIs that now use ML or AI to mitigate fraud are seeing steep declines in common forms of fraud.

For instance, tech support impersonation and IRS imposter scams are two of the mostfrequently reported scams, yet FIs using ML or AI anti-fraud solutions were 17% less likely to report experiencing these leading scams than FIs relying solely on more traditional fraud prevention tools. Likewise, they were 18% less likely to report IRS imposter scams as a top concern.

They also reported lower rates of lottery, romance, utility, rentalandSocial Security scams.In fact,as the figure illustrates, FIs leveragingthe MLand AI technology reported lower incidents of nearly every common form of fraud.

The data also finds there is some room for improvement in both ML- and AI-based solutions.The tools were less successful in identifyingcharitable-donationscams. They also missed some fake debt-collection scams. This could be because these two scams are less common (and there would thus be less data for the solutions to work from).

Despite these small hurdles, FIs areapparentlyimpressed. Fifty-two percent of the FIs we surveyed plan to implement or increase their use of ML or AI fraud prevention models.In fact, FIs using AI or ML are 17% more likely to have plans in place to implement additional ML or AI solutions than their counterparts that do not use ML or AI fraud prevention solutions. In other words, many of the FIs now using the advancedtechnologies are ready to expand their ML and AItool chest.

Our study also found that by adopting ML or AI fraud-prevention models, FIs are not only stopping more bad actors from inflicting damage but also increasing the confidence their customers have that their accounts are protected. So, in turn, customer satisfaction rates are likely to increase as fraud levels decline.

For all PYMNTS AI coverage, subscribe to the daily AINewsletter.

Go here to read the rest:
52% of FIs Plan to Lean on ML and AI to Combat Fraud - PYMNTS.com

How Machine Learning Revolutionizes Automation Security with AI-Powered Defense – Automation.com

Summary

Machine learning is sometimes considered a subset of overarching AI. But in the context of digital security, it may be better understood as a driving force, the fuel powering the engine.

The terms AI and machine learning are often used interchangeably by professionals outside the technology, managed IT and cybersecurity trades. But, truth be told, they are separate and distinct tools that can be coupled to power digital defense systems and frustrate hackers.

Artificial iIntelligence has emerged as an almost ubiquitous part of modern life. We experience its presence in everyday household robots and the familiar Alexa voice that always seems to be listening. Practical uses of AI mimic and take human behavior one step further. In cybersecurity, it can deliver 24/7 monitoring, eliminating the need for a weary flesh-and-blood guardian to stand a post.

Machine learning is sometimes considered a subset of overarching AI. But in the context of digital security, it may be better understood as a driving force, the fuel powering the engine. Using programmable algorithms, it recognizes sometimes subtle patterns. This proves useful when deployed to follow the way employees and other legitimate network users navigate systems. Although even discussions regarding AI and machine learning feel redundant, to some degree, they are a powerful one-two punch in terms of automating security decisions.

Integrating AI calls for a comprehensive understanding of mathematics, logical reasoning, cognitive sciencesand a working knowledge of business networks. The professionals who implement AI for security purposes must also possess high-level expertise and protection planning skills. Used as a problem-solving tool, AI can provide real-time alerts and take pre-programmed actions. But it cannot effectively stem the tide of bad actors without support. Enter machine learning.

In this context, machine learning emphasizes software solutions driven by data analysis. Unlike human information processing limitations, machine learning can handle massive swaths of data. What machine learning learns, for lack of a better word, translates into actionable security intel for the overarching AI umbrella.

Some people think about machine learning as a subcategory of AI, which it is. Others comprehend it in a functional way,i.e., two sides to the same coin. But for cybersecurity experts determined to deter, detectand repel threat actors, machine learning is the gasoline that powers AI engines.

Its now essential to leverage machine learning capabilities to develop a so-called intelligent computer that can defend itself, to some degree. Although the relationship between AI and machine learning is diverse and complex, an expert can integrate them into a cybersecurity posture with relative ease. Its simply a matter of repetition and the following steps.

When properly orchestrated and refined to detect user patterns and subtle anomalies, the AI-machine learning relationship helps cybersecurity professionals keep valuable and sensitive digital assets away from prying eyes and greedy digital hands.

First and foremost, its crucial to put AI and machine learning benefits in context. Studies consistently conclude that more than 80% of all cybersecurity failures are caused by human error. Using automated technologies removes many mistake-prone employees and other network users from the equation. Along with minimizing risk, these are benefits of onboarding these automated next-generation technologies.

Improved cybersecurity efficiency. According to the 2023 Global Security Operations Center Study, cybersecurity professionals spend one-third of their workday chasing downfalse positives. This waste of time negatively impacts their ability to respond to legitimate threats, leaving a business at higher than necessary risk. The strategic application of AI and machine learning can be deployed to recognize harmless anomalies and alert a CISO or vCISO only when authentic threats are present.

Increased threat hunting capabilities.Without proactive, automated security measures like MDR (managed detection and response), organizations are too often following an outdated break-and-fix model. Hackers breach systems or deposit malware, and then the IT department spends the remainder of their day, or week, trying to purge the threat and repair the damage. Cybersecurity experts have widely adopted the philosophy that the best defense is a good offense. A thoughtful AI-machine learning strategy can engage in threat hunting without ever needing a coffee break.

Cure business network vulnerabilities.Vulnerability management approaches generally employ technologies that provide proactive automation. They close cybersecurity gaps and cure inherent vulnerabilities by identifying these weaknesses and alerting human decision-makers. Unlike scheduling a routine annual risk assessment, these cutting-edge technologies deliver ongoing analytics and constant vigilance.

Resolve cybersecurity skills gap.Its something of an open secret that there are not enough trained, certified cybersecurity experts to fill corporate positions. Thats one of the reasons why industry leaders tend to outsource managed IT and cybersecurity to third-party firms. Outsourcing helps to onboard the high-level knowledge and skills required to protect valuable digital assets and sensitive information. Without enough cybersecurity experts to safeguard businesses, automation allows the resources available to companies to drill down and identify true threats. Without these advanced technologies being used to bolster network security, its likely the number of debilitating cyberattacks would grow exponentially.

The type of predictive analytics and swift decision-making capabilities this two-prong approach delivers has seemingly endless industry applications. Banking and financial sector organizations can not only use AI and machine learning to repel hackers but also ferret out fraud. Healthcare organizations have a unique opportunity to exceed Health Insurance Portability and Accountability Act (HIPAA) requirements due to the advanced personal identity record protections it affords. Companies conducting business in the global marketplace can also get a leg-up in meeting the EUs General Data Protection Regulation (GDPR) designed to further informational privacy.

Perhaps the greatest benefit organizations garner from AI and machine learning security automation is the ability to detect, respondand expel threat actors and malicious applications. Managed IT cybersecurity experts can help companies close the skills gap by integrating these and other advanced security strategies.

John Funk is a Creative Consultant at SevenAtoms. A lifelong writer and storyteller, he has a passion for tech and cybersecurity. When hes not found enjoying craft beer or playing Dungeons & Dragons, John can be often found spending time with his cats

Check out our free e-newsletters to read more great articles..

Read this article:
How Machine Learning Revolutionizes Automation Security with AI-Powered Defense - Automation.com

DeepDive: estimating global biodiversity patterns through time using deep learning – Nature.com

Sepkoski, J. J. A factor analytic description of the phanerozoic marine fossil record. Paleobiology 7, 3653 (1981).

Article Google Scholar

Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434441 (2010).

Article PubMed Google Scholar

Ezard, T. H., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species ecology drives macroevolutionary dynamics. Science 332, 349351 (2011).

Article ADS CAS PubMed Google Scholar

Benton, M. J. Exploring macroevolution using modern and fossil data. Proc. R. Soc. B: Biol. Sci. 282, 20150569 (2015).

Article Google Scholar

Niklas, K. J. Measuring the tempo of plant death and birth. N. Phytol. 207, 254256 (2015).

Article Google Scholar

Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572583 (2015).

Article PubMed Google Scholar

Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584593 (2015).

Article PubMed Google Scholar

Sepkoski Jr, J. Phanerozoic overview of mass extinction. In Patterns and Processes in the History of Life: Report of the Dahlem Workshop on Patterns and Processes in the History of Life Berlin 1985, June 1621, 277295 (Springer, 1986).

Benton, M. J. & Emerson, B. C. How did life become so diverse? the dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50, 2340 (2007).

Article Google Scholar

Alroy, J. Geographical, environmental and intrinsic biotic controls on phanerozoic marine diversification. Palaeontology 53, 12111235 (2010).

Article Google Scholar

Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291304 (2017).

Article PubMed Google Scholar

Niklas, K. J., Tiffney, B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614 616 (1983).

Article Google Scholar

Foote, M., Miller, A., Raup, D. & Stanley, S.Principles of Paleontology (W. H. Freeman, 2007). https://books.google.ch/books?id=8TsDC2OOvbYC

Close, R., Benson, R., Saupe, E., Clapham, M. & Butler, R. The spatial structure of phanerozoic marine animal diversity. Science 368, 420424 (2020).

Article ADS CAS PubMed Google Scholar

Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145154 (2022).

Article PubMed Google Scholar

Smith, A. B. & McGowan, A. J. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. Geol. Soc. Lond. Spec. Publ. 358, 17 (2011).

Article ADS Google Scholar

Benson, R., Butler, R., Close, R., Saupe, E. & Rabosky, D. Biodiversity across space and time in the fossil record. Curr. Biol. 31, R1225R1236 (2021).

Article CAS PubMed Google Scholar

Smith, A. B. Largescale heterogeneity of the fossil record: implications for phanerozoic biodiversity studies. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 356, 351367 (2001).

Article CAS Google Scholar

Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 5580 (2010).

Article Google Scholar

Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 25332547 (2012).

Article PubMed Google Scholar

Raup, D. Taxonomic diversity estimation using rarefaction. Paleobiology 1, 333342 (1975).

Article Google Scholar

Alroy, J. et al. Effects of sampling standardization on estimates of phanerozoic marine diversification. Proc. Natl Acad. Sci. 98, 62616266 (2001).

Article ADS CAS PubMed PubMed Central Google Scholar

Starrfelt, J. & Liow, L. H. How many dinosaur species were there? fossil bias and true richness estimated using a poisson sampling model. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150219 (2016).

Article Google Scholar

Flannery-Sutherland, J. T., Silvestro, D. & Benton, M. J. Global diversity dynamics in the fossil record are regionally heterogeneous. Nat. Commun. 13, 117 (2022).

Article Google Scholar

Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783791 (1987).

Alroy, J. Limits to species richness in terrestrial communities. Ecol. Lett. 21, 17811789 (2018).

Article PubMed Google Scholar

Alroy, J. On four measures of taxonomic richness. Paleobiology 46, 158175 (2020).

Article Google Scholar

Close, R., Evers, S., Alroy, J. & Butler, R. How should we estimate diversity in the fossil record? testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 13861400 (2018).

Article Google Scholar

Close, R. et al. The apparent exponential radiation of phanerozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287, 20200372 (2020).

Article PubMed PubMed Central Google Scholar

Antell, G. T., Benson, R. B. & Saupe, E. E. Spatial standardization of taxon occurrence dataa call to action. Paleobiology https://doi.org/10.1017/pab.2023.36 (2024).

Dunne, E. M., Thompson, S. E., Butler, R. J., Rosindell, J. & Close, R. A. Mechanistic neutral models show that sampling biases drive the apparent explosion of early tetrapod diversity. Nat. Ecol. Evol. 7, 14801489 (2023).

Article PubMed PubMed Central Google Scholar

Hauffe, T., Pires, M. M., Quental, T. B., Wilke, T. & Silvestro, D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol. Evol. 13, 12011213 (2022).

Article Google Scholar

Cermeo, P. et al. Post-extinction recovery of the phanerozoic oceans and biodiversity hotspots. Nature 607, 507511 (2022).

Article ADS PubMed PubMed Central Google Scholar

Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape earths biodiversity. PLoS Biol. 19, e3001340 (2021).

Article CAS PubMed PubMed Central Google Scholar

Hagen, O., Skeels, A., Onstein, R. E., Jetz, W. & Pellissier, L. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proc. Natl Acad. Sci. 118, e2026347118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Vilhena, D. A. & Smith, A. B. Spatial bias in the marine fossil record. PLoS One 8, e74470 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

Raup, D. M. Taxonomic diversity during the phanerozoic: the increase in the number of marine species since the paleozoic may be more apparent than real. Science 177, 10651071 (1972).

Article ADS CAS PubMed Google Scholar

Raup, D. M. Species diversity in the phanerozoic: a tabulation. Paleobiology 2, 279288 (1976).

Article Google Scholar

Foote, M., Crampton, J. S., Beu, A. G. & Nelson, C. S. Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls. Paleobiology 41, 245265 (2015).

Article Google Scholar

Silvestro, D., Salamin, N. & Schnitzler, J. Pyrate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 11261131 (2014).

Article Google Scholar

Cantalapiedra, J. L. et al. The rise and fall of proboscidean ecological diversity. Nat. Ecol. Evol. 5, 12661272 (2021).

Article PubMed Google Scholar

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533536 (1986).

Article ADS Google Scholar

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 17351780 (1997).

Article CAS PubMed Google Scholar

Gers, F., Schmidhuber, J. & Cummins, F. Learning to forget: continual prediction with lstm. Neural Comput. 12, 24512471 (2000).

Article CAS PubMed Google Scholar

Gal, Y. & Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. Adv. Neural Inform. Process. Syst. 29, 19 (2016).

Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning 48, 10501059 (PMLR, 2016).

Silvestro, D. & Andermann, T. Prior choice affects ability of bayesian neural networks to identify unknowns. arXiv preprint arXiv:2005.04987 (2020).

Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628642 (2015).

Article PubMed Google Scholar

Dunne, E. M., Farnsworth, A., Greene, S. E., Lunt, D. J. & Butler, R. J. Climatic drivers of latitudinal variation in late triassic tetrapod diversity. Palaeontology 64, 101117 (2021).

Article Google Scholar

De Celis, A., Narvez, I., Arcucci, A. & Ortega, F. Lagersttte effect drives notosuchian palaeodiversity (crocodyliformes, notosuchia). Historical Biol. 33, 30313040 (2021).

Article Google Scholar

Cleary, T. J., Benson, R. B., Holroyd, P. A. & Barrett, P. M. Tracing the patterns of non-marine turtle richness from the triassic to the palaeogene: from origin to global spread. Palaeontology 63, 753774 (2020).

Article Google Scholar

Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449457 (2021).

Leuenberger, C. & Wegmann, D. Bayesian computation and model selection without likelihoods. Genetics 184, 243252 (2010).

Article PubMed PubMed Central Google Scholar

Marjoram, P., Molitor, J., Plagnol, V. & Tavar, S. Markov chain monte carlo without likelihoods. Proc. Natl Acad. Sci. 100, 1532415328 (2003).

Article ADS CAS PubMed PubMed Central Google Scholar

Go here to see the original:
DeepDive: estimating global biodiversity patterns through time using deep learning - Nature.com

Prediction of incomplete immunization among under-five children in East Africa from recent demographic and health … – Nature.com

Miller, M. A. & Hinman, A. R. In Vaccines, 6th edn (eds Plotkin, S. A., Orenstein, W. A., & Offit, P. A.) 14131426 (W.B. Saunders, 2013).

Ozawa, S. et al. Return on investment from childhood immunization in low- and middle-income countries, 201120. Health Aff. (Project Hope) 35, 199207. https://doi.org/10.1377/hlthaff.2015.1086 (2016).

Article Google Scholar

Bloom, D. E. In Hot Topics in Infection and Immunity in Children VII (eds Curtis, N., Finn, A., & Pollard, A. J.) 18 (Springer, 2011).

Sim, S. Y., Watts, E., Constenla, D., Brenzel, L. & Patenaude, B. N. Return on investment from immunization against 10 pathogens in 94 low- and middle-income countries, 201130. Health Aff. (Project Hope) 39, 13431353. https://doi.org/10.1377/hlthaff.2020.00103 (2020).

Article Google Scholar

Machingaidze, S., Wiysonge, C. S. & Hussey, G. D. Strengthening the expanded programme on immunization in Africa: Looking beyond 2015. PLoS Med. 10, e1001405 (2013).

Article PubMed PubMed Central Google Scholar

Masud, T. & Navaratne, K. V. The expanded program on immunization in Pakistan: Recommendations for improving performance. (2012).

WHO/UNICEF. Progress and challenges with achieving universal immunization coverage. (2020).

WHO and UNICEF: Progress and Challenges with Achieving Universal Immunization Coverage. (WHO/UNICEF Estimates of National Immunization Coverage, J., 2019).

UNICEF. Under Five Mortality. https://data.unicef.org/topic/child-survival/under-five-mortality/ (2023).

WHO/UNICEF. Estimates of National Immunization Coverage. http://www.who.int/news-room/fact-sheets/detail/immunization-coverage (2021).

Debie, A., Lakew, A. M., Tamirat, K. S., Amare, G. & Tesema, G. A. Complete vaccination service utilization inequalities among children aged 1223 months in Ethiopia: A multivariate decomposition analyses. Int. J. Equity Health 19, 65. https://doi.org/10.1186/s12939-020-01166-8 (2020).

Article PubMed PubMed Central Google Scholar

UNICEF. (2020).

Faisal, S. et al. Modeling the factors associated with incomplete immunization among children. Math. Probl. Eng. 2022 (2022).

Negussie, A., Kassahun, W., Assegid, S. & Hagan, A. K. Factors associated with incomplete childhood immunization in Arbegona district, southern Ethiopia: A case-control study. BMC Public Health 16, 27. https://doi.org/10.1186/s12889-015-2678-1 (2016).

Article PubMed PubMed Central Google Scholar

Nour, T. Y. et al. Predictors of immunization coverage among 1223 month old children in Ethiopia: Systematic review and meta-analysis. BMC Public Health 20, 1803. https://doi.org/10.1186/s12889-020-09890-0 (2020).

Article PubMed PubMed Central Google Scholar

Tesema, G. A., Tessema, Z. T., Tamirat, K. S. & Teshale, A. B. Complete basic childhood vaccination and associated factors among children aged 1223 months in East Africa: A multilevel analysis of recent demographic and health surveys. BMC Public Health 20, 1837. https://doi.org/10.1186/s12889-020-09965-y (2020).

Article PubMed PubMed Central Google Scholar

Skull, S. A., Ngeow, J. Y. Y., Hogg, G. & Biggs, B.-A. Incomplete immunity and missed vaccination opportunities in East African immigrants settling in Australia. J. Immigr. Minor. Health 10, 263268. https://doi.org/10.1007/s10903-007-9071-9 (2008).

Article PubMed Google Scholar

Adedokun, S. T., Uthman, O. A., Adekanmbi, V. T. & Wiysonge, C. S. Incomplete childhood immunization in Nigeria: A multilevel analysis of individual and contextual factors. BMC Public Health 17, 236. https://doi.org/10.1186/s12889-017-4137-7 (2017).

Article PubMed PubMed Central Google Scholar

Russo, G. et al. Vaccine coverage and determinants of incomplete vaccination in children aged 1223 months in Dschang, West Region, Cameroon: A cross-sectional survey during a polio outbreak. BMC Public Health 15, 630. https://doi.org/10.1186/s12889-015-2000-2 (2015).

Article PubMed PubMed Central Google Scholar

Mohamud Hayir, T. M., Magan, M. A., Mohamed, L. M., Mohamud, M. A. & Muse, A. A. Barriers for full immunization coverage among under 5 years children in Mogadishu, Somalia. J. Fam. Med. Prim. Care 9, 26642669. https://doi.org/10.4103/jfmpc.jfmpc_119_20 (2020).

Article Google Scholar

Kebede Kassaw, A. A. et al. Spatial distribution and machine learning prediction of sexually transmitted infections and associated factors among sexually active men and women in Ethiopia, evidence from EDHS 2016. BMC Infect. Dis. 23, 49. https://doi.org/10.1186/s12879-023-07987-6 (2023).

Article PubMed PubMed Central Google Scholar

DHS. Data Collection. https://www.dhsprogram.com/Data/.

Etana, B. & Deressa, W. Factors associated with complete immunization coverage in children aged 1223 months in Ambo Woreda, Central Ethiopia. BMC Public Health 12, 566. https://doi.org/10.1186/1471-2458-12-566 (2012).

Article PubMed PubMed Central Google Scholar

Kassahun, M. B., Biks, G. A. & Teferra, A. S. Level of immunization coverage and associated factors among children aged 1223 months in Lay Armachiho District, North Gondar Zone, Northwest Ethiopia: A community based cross sectional study. BMC. Res. Notes 8, 239. https://doi.org/10.1186/s13104-015-1192-y (2015).

Article PubMed PubMed Central Google Scholar

Sheikh, N. et al. Coverage, timelines, and determinants of incomplete immunization in Bangladesh. Trop. Med. Infect. Dis. 3, 72 (2018).

Article PubMed PubMed Central Google Scholar

Bugvi, A. S. et al. Factors associated with non-utilization of child immunization in Pakistan: Evidence from the Demographic and Health Survey 200607. BMC Public Health 14, 232. https://doi.org/10.1186/1471-2458-14-232 (2014).

Article PubMed PubMed Central Google Scholar

Tadesse, H., Deribew, A. & Woldie, M. Predictors of defaulting from completion of child immunization in south Ethiopia, May 2008A case control study. BMC Public Health 9, 150. https://doi.org/10.1186/1471-2458-9-150 (2009).

Article PubMed PubMed Central Google Scholar

Jani, J. V., De Schacht, C., Jani, I. V. & Bjune, G. Risk factors for incomplete vaccination and missed opportunity for immunization in rural Mozambique. BMC Public Health 8, 161. https://doi.org/10.1186/1471-2458-8-161 (2008).

Article PubMed PubMed Central Google Scholar

De, P. & Bhattacharya, B. N. Determinants of child immunization in fourless-developed states of North India. J. Child Health Care 6, 3450 (2002).

Article Google Scholar

Rahman, M. & Obaida-Nasrin, S. Factors affecting acceptance of complete immunization coverage of children under five years in rural Bangladesh. Salud pblica de mxico 52, 134140 (2010).

Article PubMed Google Scholar

Atnafu, A. et al. Prevalence and determinants of incomplete or not at all vaccination among children aged 1236 months in Dabat and Gondar districts, northwest of Ethiopia: Findings from the primary health care project. BMJ Open 10, e041163. https://doi.org/10.1136/bmjopen-2020-041163 (2020).

Article PubMed PubMed Central Google Scholar

Melaku, M. S., Nigatu, A. M. & Mewosha, W. Z. Spatial distribution of incomplete immunization among under-five children in Ethiopia: Evidence from 2005, 2011, and 2016 Ethiopian Demographic and health survey data. BMC Public Health 20, 1362. https://doi.org/10.1186/s12889-020-09461-3 (2020).

Article PubMed PubMed Central Google Scholar

Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 28252830 (2011).

MathSciNet Google Scholar

Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. (2016).

Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 5667. https://doi.org/10.1038/s42256-019-0138-9 (2020).

Article PubMed PubMed Central Google Scholar

Rawat, S., Rawat, A., Kumar, D. & Sabitha, A. S. Application of machine learning and data visualization techniques for decision support in the insurance sector. Int. J. Inf. Manag. Data Insights 1, 100012 (2021).

Google Scholar

Guo, Y. The 7 steps of machine learning (2017). towardsdatascience.com (2017).

Brownlee, J. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python (Machine Learning Mastery, 2020).

Yu, L. & Liu, H. In Proceedings of the 20th International Conference on Machine Learning (ICML-03). 856863.

Bekele, W. T. Machine learning algorithms for predicting low birth weight in Ethiopia. BMC Med. Inform. Decis. Mak. 22, 232. https://doi.org/10.1186/s12911-022-01981-9 (2022).

Article PubMed PubMed Central Google Scholar

Bitew, F. H., Sparks, C. S. & Nyarko, S. H. Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia. Public Health Nutr. 112 (2021).

Chilyabanyama, O. N. et al. Performance of machine learning classifiers in classifying stunting among under-five children in Zambia. Children (Basel, Switzerland). https://doi.org/10.3390/children9071082 (2022).

Article PubMed PubMed Central Google Scholar

Emmanuel, M. Application of Machine Learning Methods in Analysis of Infant Mortality in Rwanda: Analysis of Rwanda Demographic Health Survey 201415 Dataset (University of Rwanda, 2021).

Fenta, H. M., Zewotir, T. & Muluneh, E. K. A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones. BMC Med. Inform. Decis. Mak. 21, 112 (2021).

Article Google Scholar

Kananura, R. M. Machine learning predictive modelling for identification of predictors of acute respiratory infection and diarrhoea in Ugandas rural and urban settings. PLoS Glob. Public Health 2, e0000430. https://doi.org/10.1371/journal.pgph.0000430 (2022).

Article PubMed PubMed Central Google Scholar

Saroj, R. K., Yadav, P. K., Singh, R. & Chilyabanyama, O. N. Machine learning algorithms for understanding the determinants of under-five mortality. BioData Min. 15, 20. https://doi.org/10.1186/s13040-022-00308-8 (2022).

Article PubMed PubMed Central Google Scholar

Tesfaye, B., Atique, S., Azim, T. & Kebede, M. M. Predicting skilled delivery service use in Ethiopia: Dual application of logistic regression and machine learning algorithms. BMC Med. Inform. Decis. Mak. 19, 209. https://doi.org/10.1186/s12911-019-0942-5 (2019).

Article PubMed PubMed Central Google Scholar

Bekkar, M., Djemaa, H. K. & Alitouche, T. A. Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 3, 1533 (2013).

Google Scholar

Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295316. https://doi.org/10.1016/j.neucom.2020.07.061 (2020).

Article Google Scholar

Kebede, S. D. et al. Prediction of contraceptive discontinuation among reproductive-age women in Ethiopia using Ethiopian Demographic and Health Survey 2016 Dataset: A machine learning approach. BMC Med. Inform. Decis. Mak. 23, 9. https://doi.org/10.1186/s12911-023-02102-w (2023).

Article PubMed PubMed Central Google Scholar

Wang, K. et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput. Biol. Med. 137, 104813. https://doi.org/10.1016/j.compbiomed.2021.104813 (2021).

Article PubMed Google Scholar

Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017).

Li, Q., Zhang, Y., Kang, H., Xin, Y. & Shi, C. Mining association rules between stroke risk factors based on the Apriori algorithm. Technol. Health Care. 25, 197205. https://doi.org/10.3233/thc-171322 (2017).

Article PubMed Google Scholar

Chandir, S. et al. Using predictive analytics to identify children at high risk of defaulting from a routine immunization program: Feasibility study. JMIR Public Health Surveill. 4, e9681 (2018).

Article Google Scholar

Mutua, M. K., Kimani-Murage, E. & Ettarh, R. R. Childhood vaccination in informal urban settlements in Nairobi, Kenya: Who gets vaccinated?. BMC Public Health 11, 6. https://doi.org/10.1186/1471-2458-11-6 (2011).

Article PubMed PubMed Central Google Scholar

Landoh, D. E. et al. Predictors of incomplete immunization coverage among one to five years old children in Togo. BMC Public Health 16, 968. https://doi.org/10.1186/s12889-016-3625-5 (2016).

Article PubMed PubMed Central Google Scholar

Pavlopoulou, I. D., Michail, K. A., Samoli, E., Tsiftis, G. & Tsoumakas, K. Immunization coverage and predictive factors for complete and age-appropriate vaccination among preschoolers in Athens, Greece: A cross- sectional study. BMC Public Health 13, 908. https://doi.org/10.1186/1471-2458-13-908 (2013).

Article PubMed PubMed Central Google Scholar

Zewdie, A., Letebo, M. & Mekonnen, T. Reasons for defaulting from childhood immunization program: A qualitative study from Hadiya zone, Southern Ethiopia. BMC Public Health 16, 1240. https://doi.org/10.1186/s12889-016-3904-1 (2016).

Article PubMed PubMed Central Google Scholar

Tauil, M. D. C., Sato, A. P. S. & Waldman, E. A. Factors associated with incomplete or delayed vaccination across countries: A systematic review. Vaccine 34, 26352643. https://doi.org/10.1016/j.vaccine.2016.04.016 (2016).

View post:
Prediction of incomplete immunization among under-five children in East Africa from recent demographic and health ... - Nature.com