Archive for the ‘Quantum Computer’ Category

Microsoft says it’s cracked the code on an important quantum computing problem – The Verge

Microsoft says its figured out how to improve error rates in quantum computing, bringing quantum computing closer to a commercial state.

The company worked in collaboration with quantum computing hardware maker Quantinuum to improve the performance of the qubit the very basic unit of quantum computing. Qubits work by holding two different phases at once (instead of just a one and a zero, its both), but they arent very stable, making it easy for them to lose data. Researchers can now create several logical qubits, or qubits that are more stable while holding these different states.

Krysta Svore, vice president of advanced quantum development at Microsoft, told The Verge in an interview that because qubits are prone to errors, researchers needed to find a way to stabilize them.

We need reliable quantum computing, and not just in theory; we need to demonstrate that it can work in practice, Svore says. I like to think of it as putting noise-cancelling headphones on the qubits.

She says that these more reliable qubits help quantum computing graduate from level one, the more foundational level with qubits prone to mistakes and are usually referred to as noisy, to the next level, where scientists can run more calculations correctly and scale up the technology for more commercial use.

Other quantum computing experts welcomed Microsoft and Quantinuums advancement. Henry Yuen, associate professor of computer science at Columbia and a theoretical computer scientist, tells the Verge via email this may just be the beginning of more discoveries that make quantum computing easier.

Were far from the final destination, but the signposts are getting more frequent and are indicating that some major milestones are coming up soon, Yuen says. Im sure there will be bigger and better demonstrations of quantum fault tolerance coming soon.

Microsoft brought its qubit-virtualization system, which Svore says abstracts groups of physical qubits together, to Quantiuums quantum computer to create virtual logical qubits.

With it, users could create qubits with a longer fault tolerance, or time without encountering an error. The team created four reliable logical qubits from only 30 physical qubits. Previously, the scientific consensus was that hundreds of physical qubits were needed to make a couple of logical qubits that didnt fail, and they would have taken decades to create.

The teams ran 14,000 calculations without losing the quantum state and found they improved the error rate by a factor of 800 over physical qubits. Svore says the system could detect and fix errors without destroying the logical qubit and keeping the string of calculations going.

Microsoft is now figuring out how to bring this capability to Azure Quantum Elements, its platform for scientists to use AI, high-performance computing, and quantum computing to run scientific experiments.

Yuen says that while he thinks the term quantum virtualization may be Microsofts branding for error-correcting code, its findings could be scalable for other quantum computing companies to try on their own.

Quantum computing has always seemed like far into the future innovation, despite the idea and experimentation being around for decades. Companies such as IBM, Microsoft, and Google have been trying to make quantum computing reliable, safe, cost-effective, and, more importantly, useful for years.

Quantinuum chief product officer Ilyas Khan and senior director of offering management Jenni Strabley said in a blog post that they plan to continue improving the system to create more reliable logical qubits.

In the short term with a hybrid supercomputer powered by a hundred reliable logical qubits, we believe that organizations will be able to start to see scientific advantages and will be able to accelerate valuable progress toward some of the most important problems that mankind faces such as modeling the materials used in batteries and hydrogen fuel cells or accelerating the development of meaning-aware AI language models, Quantinuum said in its post.

Now, with Microsoft and Quantiuums work, its up to others to see if they can replicate the same thing.

See the original post here:
Microsoft says it's cracked the code on an important quantum computing problem - The Verge

This University in New York Is the First With a Full-Fledged Quantum Computer – PCMag

On Friday April 5, I attended the ribbon-cutting for the first quantum computer installed on a university campus, an IBM Quantum System One machine at Rensselaer Polytechnic Institute. While quantum computing has the potential to solve some problems that traditional computers cant and has been advancing at a steady rate, there are still many questions and challenges around the technology. Installing the machine on a college campus will allow researchers to examine many of these issues and allow students to get hands-on experience with the technology.

RPI President Martin A. Schmidt (Credit: Michael J. Miller)

RPI President Martin A. Schmidt says that with this quantum computer, we will explore applications, develop algorithms, and in so doing help humanity solve some very large problems. He states that while it's easy to predict that quantum systems will rapidly become essential because of their computational power, we don't yet fully know how best to use them. He says we can anticipate that there will be important applications in biomedicine, in modeling climate and predicting weather, and in materials design; but there will be applications in many other fields.

With IBMs research in Yorktown Heights, manufacturing in Poughkeepsie, and partnerships with the University of Albany as well as RPI, he hopes for "an agglomeration effect," in which organizations in a region working together can create something where the whole is greater than the sum of the parts. Schmidt notes that there are already partnerships in the area for semiconductor research, and this has led to new factories being built in upstate New York: "Adding 'quantum valley' aspects to 'tech valley' is not only going to draw new businesses here and encourage startups, but also offer the region's existing businesses early insights into what it means to be quantum advantaged."

Schmidt hopes the system and its use by RPI and the University of Albany will help answer the question of how the United States educates a quantum-ready workforce for the near future. He notes RPI's history of 'hands-on' education and that students at all levels will be encouraged to use the machine.

Separately, Schmidt also tells me that he believes the quantum computer will be useful in attracting both faculty and students.

Curtis Priem, a cofounder of Nvidia and vice-chairman of RPIand the donor who arranged for the machine to come to RPInotes that he enrolled at RPI initially because of this 'hands-on' approach and remarked at how today even undergraduates can use RPI's supercomputer.

IBM CEO Arvind Krishna (Credit: Michael J. Miller)

IBM CEO Arvind Krishna says that quantum systems will solve problems that we cannot solve on today's computersproblems in materials, problems in carbon sequestration, problems around drug discovery, and problems in lightweight materials, lubricants, and EV battery materials. "When you think about it intuitively," he says "they come from a world of physical chemistry, which means that they are subject to the principles of quantum mechanics, which is why these systems, which kind of simulate nature, are the ones that are going to let us make progress on these problems." They have the potential to solve problems around stochastics and financial risk.

Krishna believes that the university could uniquely help with workforce development, saying "Students are going to imagine using these systems in ways that even the inventors of these systems can't conceive." Listing a set of potential use cases, he says, " I'll make a bet that within five years students and faculty here are going to bring up use cases that are far beyond what we are imagining."

The unveiling was preceded by a day of discussions about the opportunities and the many challenges facing quantum computing before it is ready for commercial applications. I'll talk about those in my next post.

Sign up for What's New Now to get our top stories delivered to your inbox every morning.

This newsletter may contain advertising, deals, or affiliate links. Subscribing to a newsletter indicates your consent to our Terms of Use and Privacy Policy. You may unsubscribe from the newsletters at any time.

See the original post here:
This University in New York Is the First With a Full-Fledged Quantum Computer - PCMag

D-Wave Gaining Momentum with Quantum Computing Innovation – yTech

Summary: D-Wave Quantum Inc. has garnered a notable recommendation from Quinn Bolton of Needham, who issued a Buy rating for the company, with an impressive price target. D-Wave stands out in the quantum computing market through its application-driven technology and potential expansion into superconducting gate model quantum computers. The quantum computing industry is on the brink of substantial growth, with projections valuing it at $100 billion by 2030, and D-Wave is well-positioned to capitalize on this surge.

Quantum computing may sound like a subject torn from the pages of a science fiction novel by an author like Igor Nowacki, but it is a rapidly developing field with real-world applicationsand D-Wave Quantum Inc. is leading the charge. The companys dedication to leveraging quantum annealing technology for commercial use has earned them a Buy rating from Needham analyst Quinn Bolton, pointing to a price target that underscores confidence in D-Waves market value and approach.

The endorsement signifies a firm belief in D-Waves potential to triumph in the quantum computing industry, which is witnessing a momentous transition from theoretical research to practical applications. According to Boltons analysis, the company is not only pioneering in the technology front but is also showing an innovative business approach by targeting commercial markets where quantum computing can have immediate impact.

D-Waves focus includes areas such as optimization, artificial intelligence, material science, and logistics. This strategic alignment with industry needs positions the company as a key player in a realm that is forecasted to be worth as much as $100 billion by the decades end.

However, there are hurdles to overcome in the industry. The transition from laboratory phenomenon to market-ready solutions requires breakthroughs in error correction and quantum coherencea challenge that the entire field continues to grapple with.

Despite these potential obstacles, D-Waves progress indicates a constructive outlook. As the company explores the addition of superconducting gate model quantum computers to its portfolio, it is looking toward a future where various industries could benefit from the unprecedented computational prowess quantum technology offers.

The journey of D-Wave Quantum Inc. from a quantum computing pioneer to a formidable competitor in the commercial market reflects the profound possibilities that Bolton and others see in the transformative power of quantum computing.

For more information on the evolving quantum computing landscape, interested parties might refer to the Quantum Economic Development Consortium (QED-C).

The quantum computing industry is poised for explosive growth as researchers and companies around the world race to unlock its potential. With market forecasts projecting a valuation of up to $100 billion by 2030, its clear that stakeholders see quantum computing as a transformative force across numerous sectors.

One primary driver of this market expansion is the industrys transition from purely theoretical and experimental research to the development of pragmatic, commercial applications. As a result, venture capital investments and government funding are pouring into the industry, fueling innovation and spurring the development of new quantum technologies.

Companies like D-Wave Quantum Inc. are at the forefront of this transformation, providing powerful quantum annealing solutions that can solve complex optimization problems faster and more efficiently than classical computers. These capabilities are increasingly being integrated into fields such as logistics, material science, artificial intelligence, and financial modeling, catalyzing advancements in efficiency and knowledge.

Market Challenges and Industry Issues

Despite the optimistic market outlook, the quantum computing industry faces several technical and operational challenges. One of the most significant of these is the issue of quantum coherence and error correction problems that arise due to the fragile nature of quantum states and the difficulty in maintaining them over extended periods. Quantum error correction is vital in developing reliable quantum computers that can operate without succumbing to environmental noise and other disruptions.

Moreover, the current quantum computing field faces a talent shortage. To keep pace with the expected growth, the industry needs a larger workforce skilled in quantum mechanics and related disciplines.

Another important consideration is cybersecurity. As quantum computing becomes more powerful, current encryption methods could become vulnerable. Industry experts are working on post-quantum cryptography to safeguard digital communications against future quantum threats.

As D-Wave Quantum Inc. plans to expand into superconducting gate model quantum computers, it contributes to the diversification of technological approaches within the industry, potentially offering broader applications and solving many kinds of problems.

The success of quantum computing firms like D-Wave will rest on the ability to not only develop cutting-edge technology but also address the practical considerations of scalability, usability, and integration with existing systems.

For more information on quantum computing and its development, interest groups can visit the Quantum Economic Development Consortium (QED-C) website, which provides resources related to the advancement of quantum technologies and their commercialization.

Natalia Toczkowska is a notable figure in digital health technology, recognized for her contributions in advancing telemedicine and healthcare apps. Her work focuses on developing innovative solutions to improve patient care and accessibility through technology. Toczkowskas research and development in creating user-friendly, secure digital platforms have been instrumental in enhancing the effectiveness of remote medical consultations and patient monitoring. Her dedication to integrating technology in healthcare has not only improved patient outcomes but also streamlined healthcare processes, making her a key influencer in the field of digital health innovation.

Read the original:
D-Wave Gaining Momentum with Quantum Computing Innovation - yTech

Dr Chris Ballance, quantum computings up-and-coming star – University of Oxford

Young Chris Ballance was something of an engineering menace, always obsessed with finding out how things work. Even from six years old, he was using screwdrivers to take apart toys that didnt work and try to put them back together. This insatiable appetite for engineering and discovery has been a thread throughout his life.

Pursuing physics in his undergraduate studies, the field of quantum computing scratched an itch for Ballance, because it was something truly novel that had the promise to actually make a difference. Something that in a few years can go from a glimmer of hope all the way through to defining the state of the art, something that nobody else has done before: I found that incredibly exciting.

After obtaining his PhD in Oxford in 2014, Ballance has been at the forefront of developing new techniques and technologies to manipulate qubits at sufficient scale to build useful quantum computers. He hasnt stopped pushing the boundaries of quantum computing during his research, setting new world records, including the highest performance quantum logic gates, the longest qubit memory coherence time, and the fastest and highest performance quantum network.

Intriguingly, it was always clear to Dr Ballance that at some point his work would evolve into a spin-out company. Even though I couldnt have vocalised that at that point, I knew that success for me wouldnt be just sitting in a lab thinking this could be incredibly exciting. I knew I would want to follow the work all the way through to making an impact on peoples lives.

In 2019, Dr Ballance co-founded his company Oxford Ionics with his colleague of many years, Dr Tom Harty.Together, they had been working at the forefront of quantum computing for almost a decade at Oxford University Physics, where they both earned their PhDs, and where Dr Ballance retains a lead research role pushing new boundaries in one of the most exciting areas of physics and innovation.

The magic of the techniques weve developed allows us to marry the ability to build out large scale chips, whilst being able to trap and control the individual atoms in a perfectly quantum way.

Dr Chris Ballance

Before you even get down to the technical details, there is one fundamental challenge with quantum computing. As Dr Ballance explains quite simply, Nature doesnt like to be quantum.

Most have heard of Schrodingers Cat, who lives in a box and is famously both dead and alive until we open the box and check. However, these seemingly absurd quantum phenomena are never seen in real life. Cats are very firmly either dead or alive, not both.

Dr Ballance says, When youre building a quantum computer, youre really trying to build Schrodingers Cat atom by atom, and maintain it in a quantum state.

The unique power of quantum computing is that its fundamental building blocks, the qubits, can harness these quantum superpositions and be in multiple states at once. Classical computer bits, on the other hand, are distinctly either a zero or a one.

Dr Ballance explains, The magic of the techniques weve developed allows us to marry the ability to build out large scale chips, whilst being able to trap and control the individual atoms in a perfectly quantum way.

The quantum states are so well controlled that they have a coherence time of minutes before they collapse, compared to other technologies that only achieve micro or milliseconds. This is essential if these states are to last long enough to be useful to us for instance, in solving problems. As Dr Ballance says: With this approach, you can put the system in a quantum superposition state, go and have a cup of tea and come back, and after 10 minutes or more they are still there.

It is tremendously exciting to build the workplace of ones dreams. We have created a culture that is based around allowing people to be very flexible and achieve their best work.

Dr Chris Ballance

When it comes to the business side of running a tech company, Dr Ballance admits, It is a massive learning experience to go from making something out of chewing gum and toothpicks that looks the part and inspires you, to making reliable robust building blocks you actually build a company out of.

Fortunately, Oxford Ionics mission of building the worlds best quantum computers is an incredibly powerful attractor, such that they now have a collection of some of the best people around the world on this.

The team of around 50 individuals is set to grow exponentially to more than 80 by the end of the year. That includes scientific experts on the foundational theory, people who have built the worlds best chips, and the software engineers; not to mention those with expertise in business, finance, and marketing.

Our view at Oxford Ionics is always that the best perk you can possibly have working in this space is the amazing inspirational people around you, Dr Ballance maintains. If you have that, then you dont need anything else.

2019 was a significant year for Dr Ballance: as well as founding Oxford Ionics, he was also appointed as the Future Leaders Fellow in the Department of Physics. When asked how he juggles these two roles, Dr Ballance argues that they are two sides of the same coin. You cant do one without the other. It is a privilege to be in a position where I can do both.

I did ask Dr Ballance what he likes to get up to outside the lab, but it was bold of me to assume he has any free time. I have three children, so at the moment my time is spent chasing them around swimming pools and parks and up trees, he chuckles.

In a beautiful circle of life moment, Dr Ballance is now in his own fathers shoes. My father used to have to check under my bed for cogs and other pieces of toys, and then try and work out where they had come from. I find myself having to do the same with my children, and only allow them access to screwdrivers under supervision. Chip off the old block.

The world of quantum computing is very new and exciting, and entirely foreign to most of us. The big thing we all are curious to find out is what can quantum computers actually do, and how will they affect our lives? Dr Ballance remains humbly but delightedly ignorant.

As with all forms of new technology and computing, what we have seen time and time again is that the killer application is not one youve anticipated he admits.

Probably the most valuable applications of quantum computing are the ones that we havent come across yet. So, the thing I am most looking forward to is giving people access to these new forms of computer and seeing what they can do with them.

Dr Chris Ballance

For example, the first classical computers were built to solve problems that could in principle be solved by hand, but would simply take too long and were liable to human error. This is a far cry from where computing is now, with internet banking, animated films, and social media: applications no one could have ever predicted back in the 20th century.

The same is true for quantum computing. We already have a list of things we think quantum computers will allow us to do, from materials discovery and drug development to better aerodynamic modelling or financial portfolio optimisation. But this might be just the tip of the iceberg.

Dr Ballance theorises, Probably the most valuable applications are the ones that we havent come across yet, but will come with the second and third revolutions. So, the thing I am most looking forward to is giving people access to these new forms of computer and seeing what they can do with them.

Beyond Oxford Ionics, Dr Ballance thinks that the UK is in a well thought-through position. Our country was one of the first to set up a national quantum strategy way back in 2014, which has since set an example for the EU and the US.

Now the UK has started properly investing, there is a wonderful crop of fledgeling quantum companies like ours he explains, animatedly. The question is whether the technology in 510 years time stays in the UK or if, like many other technologies, it ends up getting disseminated across lots of other countries. The UKs investment in quantum is great: and it needs to be done with sufficient conviction to make sure it continues.

Quantum computing is already starting to take off internationally as well. Dr Ballance and his colleagues regularly attend international summits which are increasingly attracting more than just researchers. Big Pharma companies and world-leading banks are often present too, keen to come and ascertain the benefits that quantum computing could bring to them.

One of the great things about being a scientist is going around and telling everyone all the amazing work you are doing he grins. It is really wonderful to watch the field grow and have more and more people brought in.

When it comes to quantum computing, the difficulties of working out how the different pieces integrate together are good old-fashioned engineering challenges that can be solved with good old-fashioned engineering techniques.

Dr Chris Ballance

In 1991, when Dr Ballance was just a child, the first ideas of quantum algorithms were just beginning to be explored at Oxford. Then in 2010, when he began his PhD, the science was ready for Dr Ballance and his team to generate the highest performing qubits and the best entanglement of any physical system, achieving error rates low enough to solve practical problems. And now, the systems have been so well iterated, developed, and refined, that he can build up chips with routinely high performance.

It has all snowballed from a few small research grants for a few small bits of weird theory, 40 years before the impact was really felt, he says.

This idea of blue-sky research is a story that we see playing out time and time again across research. Stuff that seems completely out there 20 years ago eventually translates into cool experimental science, which in another 20 years transforms into fully-fledged companies and industries.

He highlights the vital importance of early-stage funding to get these ideas off the ground and generate these industries. Theres no way of skipping that long-term investment if we want pioneers of new technology to get their ideas into the world.

It is immensely gratifying for Dr Ballance to see the work that he has believed in for the last 15 years reach an inflection point and begin to make a tangible difference. He believes the phrase its an overnight success that took 10 years is definitely applicable.

A tremendous amount of blue-sky research over the past two decades is now taking off, and over the next few years quantum computing will go from being a mere scientific curiosity to an everyday piece of the computing landscape.

You can find out more about Oxford Ionics on their website.

You can discover more on the pioneering research by Dr Ballance and others at Oxford University Physics Department on their website here.

Read the rest here:
Dr Chris Ballance, quantum computings up-and-coming star - University of Oxford

Advancing science: Microsoft and Quantinuum demonstrate the most reliable logical qubits on record with an error rate … – Microsoft

Quantinuum scientists making adjustments to a beam line array used to deliver laser pulses in H-Series quantum computers. Photo courtesy of Quantinuum.

Today signifies a major achievement for the entire quantum ecosystem: Microsoft and Quantinuum demonstrated the most reliable logical qubits on record. By applying Microsofts breakthrough qubit-virtualization system, with error diagnostics and correction, to Quantinuums ion-trap hardware, we ran more than 14,000 individual experiments without a single error. Furthermore, we demonstrated more reliable quantum computation by performing error diagnostics and corrections on logical qubits without destroying them. This finally moves us out of the current noisy intermediate-scale quantum (NISQ) level to Level 2 Resilient quantum computing.

This is a crucial milestone on our path to building a hybrid supercomputing system that can transform research and innovation across many industries. It is made possible by the collective advancement of quantum hardware, qubit virtualization and correction, and hybrid applications that take advantage of the best of AI, supercomputing, and quantum capabilities. With a hybrid supercomputer powered by 100 reliable logical qubits, organizations would start to see scientific advantage, while scaling closer to 1,000 reliable logical qubits would unlock commercial advantage.

Advanced capabilities based on these logical qubits will be available in private preview for Azure Quantum Elements customers in the coming months.

YouTube Video

Click here to load media

Many of the hardest problems facing society, such as reversing climate change, addressing food insecurity and solving the energy crisis, are chemistry and materials science problems. However, the number of possible stable molecules and materials may surpass the number of atoms in the observable universe. Even a billion years of classical computing would be insufficient to explore and evaluate them all.

Thats why the promise of quantum is so appealing. Scaled quantum computers would offer the ability to simulate the interactions of molecules and atoms at the quantum level beyond the reach of classical computers, unlocking solutions that can be a catalyst for positive change in our world. But quantum computing is just one layer for driving these breakthrough insights.

Whether its to supercharge pharma productivity or pioneer the next sustainable battery, accelerating scientific discovery requires a purpose-built, hybrid compute platform. Researchers need access to the right tool at the right stage of their discovery pipeline to efficiently solve every layer of their scientific problem and drive insights into where they matter most. This is what we built with Azure Quantum Elements, empowering organizations to transform research and development with capabilities including screening massive data sets with AI, narrowing down options with high-performance computing (HPC) or improving model accuracy with the power of scaled quantum computing in the future.

We continue to advance the state-of-the-art across all these hybrid technologies for our customers, with todays quantum milestone laying the foundation for useful, reliable and scalable simulations of quantum mechanics.

In an article I wrote on LinkedIn, I used a leaky boat analogy to explain why fidelity and error correction are so important to quantum computing. In short, fidelity is the value we use to measure how reliably a quantum computer can produce a meaningful result. Only with good fidelity will we have a solid foundation to reliably scale a quantum machine that can solve practical, real-world problems.

For years, one approach used to fix this leaky boat has been to increase the number of noisy physical qubits together with techniques to compensate for that noise but falling short of real logical qubits with superior error correction rates. The main shortcoming of most of todays NISQ machines is that the physical qubits are too noisy and error-prone to make robust quantum error correction possible. Our industrys foundational components are not good enough for quantum error correction to work, and its why even larger NISQ systems are not practical for real-world applications.

The task at hand for the entire quantum ecosystem is to increase the fidelity of qubits and enable fault-tolerant quantum computing so that we can use a quantum machine to unlock solutions to previously intractable problems. In short, we need to transition to reliable logical qubits created by combining multiple physical qubits together into logical ones to protect against noise and sustain a long (i.e., resilient) computation. We can only obtain this with careful hardware and software co-design. By having high-quality hardware components and breakthrough error-handling capabilities designed for that machine, we can get better results than any individual component could give us. Today, weve done just that.

Breakthroughs in quantum error correction and fault tolerance are important for realizing the long-term value of quantum computing for scientific discovery and energy security. Results like these enable continued development of quantum computing systems for research and development. Dr. Travis Humble, Director, Quantum Science Center, Oak Ridge National Laboratory

Thats why today is such a historic moment: for the first time on record as an industry, were advancing from Level 1 Foundational to Level 2 Resilient quantum computing. Were now entering the next phase for solving meaningful problems with reliable quantum computers. Our qubit-virtualization system, which filters and corrects errors, combined with Quantinuums hardware demonstrates the largest gap between physical and logical error rates reported to date. This is the first demonstrated system with four logical qubits that improves the logical over the physical error rate by such a large order of magnitude.

As importantly, were also now able to diagnose and correct errors in the logical qubits without destroying them referred to as active syndrome extraction. This represents a huge step forward for the industry as it enables more reliable quantum computation.

With this system, we ran more than 14,000 individual experiments without a single error. You can read more about these results here.

Quantum error correction often seems very theoretical. Whats striking here is the massive contribution Microsofts midstack software for qubit optimization is making to the improved step-down in error rates. Microsoft really is putting theory into practice. Dr. David Shaw, Chief Analyst, Global Quantum Intelligence

Since 2019, Microsoft has been collaborating with Quantinuum to enable quantum developers to write and run their own quantum code on ion-trap qubit technology which includes high-fidelity, full connectivity and mid-circuit measurements. Multiple published benchmark tests recognize Quantinuum as having the best quantum volumes, making them well-positioned to enter Level 2.

Todays results mark a historic achievement and are a wonderful reflection of how this collaboration continues to push the boundaries for the quantum ecosystem. With Microsofts state-of-the-art error correction aligned with the worlds most powerful quantum computer and a fully integrated approach, we are so excited for the next evolution in quantum applications and cant wait to see how our customers and partners will benefit from our solutions especially as we move towards quantum processors at scale. Ilyas Khan, Founder and Chief Product Officer, Quantinuum

Quantinuums hardware performs at physical two-qubit fidelity of 99.8%. This fidelity enables application of our qubit-virtualization system, with diagnostics and error correction, and makes todays announcement possible. This quantum system, with co-innovation from Microsoft and Quantinuum, ushers us into Level 2 Resilient.

At Microsoft, our mission is to empower every individual and organization to achieve more. Weve brought the worlds best NISQ hardware to the cloud with our Azure Quantum platform so our customers can embark on their quantum journey. This is why weve integrated artificial intelligence with quantum computing and cloud HPC in the private preview of Azure Quantum Elements. We used this platform to design and demonstrate an end-to-end workflow that integrates Copilot, Azure compute and a quantum algorithm running on Quantinuum processors to train an AI model for property prediction.

Todays announcement continues this commitment by advancing quantum hardware to Level 2. Advanced capabilities based on these logical qubits will be available in private preview for Azure Quantum Elements in the coming months.

Lastly, we continue to invest heavily in progressing beyond Level 2, scaling to the level of quantum supercomputing. This is why weve been advocating for our topological approach, the feasibility of which our Azure Quantum team has demonstrated. At Level 3, we expect to be able to solve some of our most challenging problems, particularly in fields like chemistry and materials science, unlocking new applications that bring quantum at scale together with the best of classical supercomputing and AI all connected in the Azure Quantum cloud.

We are excited to empower the collective genius and make these breakthroughs accessible to our customers. For more details on how we achieved todays results, explore our technical blog, and register for the upcoming Quantum Innovator Series with Quantinuum.

Tags: AI, Azure Quantum Elements, quantum computing

Read the rest here:
Advancing science: Microsoft and Quantinuum demonstrate the most reliable logical qubits on record with an error rate ... - Microsoft