Archive for the ‘Quantum Computer’ Category

Quantum Computing in the NISQ era and beyond Quantum

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/S0036144598347011. https://doi.org/10.1137/S0036144598347011

[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/s41534-017-0018-2. https://doi.org/10.1038/s41534-017-0018-2 arXiv:1702.03061

[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/nature23458. https://doi.org/10.1038/nature23458

[4] S. P. Jordan, Quantum algorithm zoo, http://math.nist.gov/quantum/zoo/. http://math.nist.gov/quantum/zoo/

[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/npjqi.2015.23. https://doi.org/10.1038/npjqi.2015.23 arXiv:1511.04206

[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/9706033, 10.1103/PhysRevLett.79.325. https://doi.org/10.1103/PhysRevLett.79.325 arXiv:quant-ph/9706033

[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/9701001, 10.1137/S0097539796300933. https://doi.org/10.1137/S0097539796300933 arXiv:quant-ph/9701001

[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/pnas.97.1.28. https://doi.org/10.1073/pnas.97.1.28

[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).

[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557. arXiv:0904.2557

[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/s41567-018-0124-x. https://doi.org/10.1038/s41567-018-0124-x arXiv:1608.00263

[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017). arXiv:1612.05903

[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017). arXiv:1710.05867

[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/PhysRevLett.117.060504. https://doi.org/10.1103/PhysRevLett.117.060504 arXiv:1512.04600

[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/nature13171. https://doi.org/10.1038/nature13171 arXiv:1402.4848

[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/978-3-540-88702-7. https://doi.org/10.1007/978-3-540-88702-7

[17] R. Allaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Lnger, N. Ltkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/0701168, 10.1016/j.tcs.2014.09.018. https://doi.org/10.1016/j.tcs.2014.09.018 arXiv:quant-ph/0701168

[18] S. Muralidharan, L. Li, J. Kim, N Ltkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/srep20463. https://doi.org/10.1038/srep20463 arXiv:1509.08435

[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/s41586-018-0019-0. https://doi.org/10.1038/s41586-018-0019-0 arXiv:1803.06219

[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018). arXiv:1804.00640

[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/RevModPhys.89.035002. https://doi.org/10.1103/RevModPhys.89.035002 arXiv:1611.04691

[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813. arXiv:1203.5813

[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).

[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014). arXiv:1411.4028

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/ncomms5213. https://doi.org/10.1038/ncomms5213 arXiv:1509.04279

[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/0111050, 10.1145/990308.990310. https://doi.org/10.1145/990308.990310 arXiv:cs/0111050

[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/nature14539. https://doi.org/10.1038/nature14539

[28] T. F. Rnnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/science.1252319. https://doi.org/10.1126/science.1252319

[29] S. Mandr, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/2058-9565/aa7877. https://doi.org/10.1088/2058-9565/aa7877 arXiv:1703.00622

[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/RevModPhys.90.015002. https://doi.org/10.1103/RevModPhys.90.015002 arXiv:1611.04471

[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/0405098. arXiv:quant-ph/0405098

[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/0606140. arXiv:quant-ph/0606140

[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/PhysRevA.94.042318. https://doi.org/10.1103/PhysRevA.94.042318 arXiv:1607.03389

[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018). arXiv:1803.02047

[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017). arXiv:1703.00032

[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017). arXiv:1711.07500

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/nature23474. https://doi.org/10.1038/nature23474 arXiv:1611.09347

[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/nphys3272. https://doi.org/10.1038/nphys3272

[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017). arXiv:1711.02038

[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/PhysRevLett.103.150502. https://doi.org/10.1103/PhysRevLett.103.150502 arXiv:0811.3171

[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/PhysRevLett.110.250504. https://doi.org/10.1103/PhysRevLett.110.250504 arXiv:1301.2340

[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/PhysRevA.93.032324. https://doi.org/10.1103/PhysRevA.93.032324 arXiv:1512.05903

[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017). arXiv:1711.05394

[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016). arXiv:1603.08675

[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).

[46] F. G. S. L. Brando and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017). arXiv:1609.05537

[47] F. G. S. L. Brando, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017). arXiv:1710.02581

[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/pnas.1619152114. https://doi.org/10.1073/pnas.1619152114 arXiv:1605.03590

[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/PhysRevA.92.062318. https://doi.org/10.1103/PhysRevA.92.062318 arXiv:1506.05135

[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017). arXiv:1706.05413

[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuleti, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/nature24622. https://doi.org/10.1038/nature24622 arXiv:1707.04344

[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/nature24654. https://doi.org/10.1038/nature24654 arXiv:1708.01044

[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016). arXiv:1612.07330

[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/PhysRevA.94.052325. https://doi.org/10.1103/PhysRevA.94.052325 arXiv:1512

[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017). arXiv:1702.03688

[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/PhysRevA.86.032324. https://doi.org/10.1103/PhysRevA.86.032324 arXiv:1208.0928

[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/npjqi.2015.1. https://doi.org/10.1038/npjqi.2015.1 arXiv:1501.02813

[1] Vojtch Havlek, Antonio D. Crcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", Nature 567 7747, 209 (2019).

[2] Abhinav Kandala, Kristan Temme, Antonio D. Crcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Error mitigation extends the computational reach of a noisy quantum processor", Nature 567 7749, 491 (2019).

[3] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Frchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).

[4] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).

[5] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).

[6] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).

[7] Guillaume Verdon, Michael Broughton, Jarrod R. McClean, Kevin J. Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, and Masoud Mohseni, "Learning to learn with quantum neural networks via classical neural networks", arXiv:1907.05415.

[8] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).

[9] Gavin E. Crooks, "Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition", arXiv:1905.13311.

[10] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).

[11] J. Preskill, "Simulating quantum field theory with a quantum computer", The 36th Annual International Symposium on Lattice Field Theory. 22-28 July 24 (2018).

[12] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", Physical Review Applied 9 4, 044036 (2018).

[13] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402.

[14] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450.

[15] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922.

[16] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).

[17] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou, and Luyan Sun, "Quantum generative adversarial learning in a superconducting quantum circuit", Science Advances 5 1, eaav2761 (2019).

[18] Aram Harrow and John Napp, "Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms", arXiv:1901.05374.

[19] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729.

[20] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745.

[21] Ramis Movassagh, "Quantum supremacy and random circuits", arXiv:1909.06210.

[22] Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, and K. Birgitta Whaley, "Generalized swap networks for near-term quantum computing", arXiv:1905.05118.

[23] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mria Kieferov, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Aln Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976.

[24] Sebastien Piat, Nairi Usher, Simone Severini, Mark Herbster, Tommaso Mansi, and Peter Mountney, "Image classification with quantum pre-training and auto-encoders", International Journal of Quantum Information 16 8, 1840009-332 (2018).

[25] Eric R. Anschuetz, Jonathan P. Olson, Aln Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927.

[26] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).

[27] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176.

[28] Jonathan Romero and Alan Aspuru-Guzik, "Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions", arXiv:1901.00848.

[29] Maria Schuld and Nathan Killoran, "Quantum machine learning in feature Hilbert spaces", arXiv:1803.07128.

[30] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224.

[31] Mark Fingerhuth, Tom Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411.

[32] Sumsam Ullah Khan, Ahsan Javed Awan, and Gemma Vall-Llosera, "K-Means Clustering on Noisy Intermediate Scale Quantum Computers", arXiv:1909.12183.

[33] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573.

[34] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287.

[35] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323.

[36] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble, "Application of Quantum Annealing to Nurse Scheduling Problem", Scientific Reports 9, 12837 (2019).

[37] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661.

[38] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).

[39] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations", Physical Review Applied 12 6, 064041 (2019).

[40] Salonik Resch and Ulya R. Karpuzcu, "Quantum Computing: An Overview Across the System Stack", arXiv:1905.07240.

[41] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", arXiv:1808.00128.

[42] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).

View post:
Quantum Computing in the NISQ era and beyond Quantum

Quantum Computing Summer School Fellowship – Los Alamos National Laboratory

Summary of Program

The Quantum Computing Summer School is an immersive 10-week curriculum that includes tutorials from world-leading experts in quantum computation as well as one-on-one mentoring from LANL staff scientists who are conducting cutting-edge quantum computing research. Summer school fellowship recipients will be exposed to the theoretical foundations of quantum computation and will become skilled at programming commercial quantum computers, such as those developed by D-Wave Systems, Rigetti, and IBM. Roughly twenty students (with the precise number determined based on the applicant pool) will be awarded a fellowship from LANL for the summer school. The fellowship amount ranges from $7,500 to $15,500, based on academic rank (junior, senior, 1st year graduate student, etc.).

Applications for 2023 are open until January 22nd, 2023.

Invited speakers:Tameem Albash (University of New Mexico), Piotr Czarnik (Jagiellonian University), David Gosset (University of Waterloo), Aram Harrow (MIT), Robert Huang (Caltech), Nathan Killoran (Xanadu), Jarrod McClean (Google), Peter Shor (MIT), Guillaume Verdon, Stephan Woerner (IBM Research)

Invited speakers: Tameem Albash (University of New Mexico),Andrew Childs (University of Maryland),Elizabeth Crosson (University of New Mexico),Jens Eisert (Free University of Berlin),David Gosset (University of Waterloo),Shelby Kimmel (Middlebury College),Raymond Laflamme (Institute for Quantum Computing),Pavel Lougovski (Amazon Web Services),Mohan Sarovar (Sandia),Kristan Temme (IBM)

Invited Speakers: Scott Aaronson (UT Austin), Fernando Brandao (CalTech), Elizabeth Crosson (U New Mexico), Christopher Granade (Microsoft Research), Travis Humble (ORNL), John Martinis (Google), Margaret Martonosi (Princeton U), Jarrod McClean (Google), Seth Merkel (IBM), Chris Monroe (U Maryland), Alejandro Perdomo-Ortiz (Zapata Computing), Mauricio Reis (D-Wave), Will Zeng (Stanford U)

Invited Speakers: Sergio Boixo (Google), Alex Condello (D-Wave), Susan Coppersmith (Wisconsin), Ivan Deutsch (UNM), Jungsang Kim (IonQ / Duke), Daniel Lidar (USC), Doug McClure (IBM), Peter Shor (MIT), Matthias Troyer (Microsoft), Eleanor Rieffel (NASA), Will Zeng (Rigetti)

In the first 2 weeks, students will attend lectures given by world-leading experts from both academia and industry in quantum computing research. The lectures will cover the following topics:

Following the 2-week lecture period, each student will work on a research project in quantum computing for the remaining 8 weeks. For this research project, each student will be paired with a LANL mentor who will propose project topics and provide guidance. Each project will involve some hands-on programming of a quantum computer (either Rigetti's, IBMs, or D-Waves). If time permits, the student will begin preparing their results for publication.

The program will begin on June 5th, 2023 and will last 10 weeks.

Originally posted here:
Quantum Computing Summer School Fellowship - Los Alamos National Laboratory

The quantum race is here, and Colorado is poised to lead the pack – 9News.com KUSA

The quantum race is here, and Colorado is poised to lead the pack  9News.com KUSA

Go here to see the original:
The quantum race is here, and Colorado is poised to lead the pack - 9News.com KUSA

The Problem with Quantum Computers – Scientific American Blog Network

By now, most people have heard that quantum computing is a revolutionary technology that leverages the bizarre characteristics of quantum mechanics to solve certain problems faster than regular computers can. Those problems range from the worlds of mathematics to retail business, and physics to finance. If we get quantum technology right, the benefits should lift the entire economy and enhance U.S. competitiveness.

The promise of quantum computing was first recognized in the 1980s yet remains unfulfilled. Quantum computers are exceedingly difficult to engineer, buildand program. As a result, they are crippled by errors in the form of noise, faultsand loss of quantum coherence, which is crucial to their operation and yet falls apart before any nontrivial program has a chance to run to completion.

This loss of coherence (called decoherence), caused by vibrations, temperature fluctuations, electromagnetic waves and other interactions with the outside environment, ultimately destroys the exotic quantum properties of the computer. Given the current pervasiveness of decoherence and other errors, contemporary quantum computers are unlikely to return correct answers for programs of even modest execution time.

While competing technologies and competing architectures are attacking these problems, no existing hardware platform can maintain coherence and provide the robust error correction required for large-scale computation. A breakthrough is probably several years away.

The billion-dollar question in the meantime is, how do we get useful results out of a computer that becomes unusably unreliable before completing a typical computation?

Answers are coming from intense investigation across a number of fronts, with researchers in industry, academia and the national laboratories pursuing a variety of methods for reducing errors. One approach is to guess what an error-free computation would look like based on the results of computations with various noise levels. A completely different approach, hybrid quantum-classical algorithms, runs only the most performance-critical sections of a program on a quantum computer, with the bulk of the program running on a more robust classical computer. These strategies and others are proving to be useful for dealing with the noisy environment of todays quantum computers.

While classical computers are also affected by various sources of errors, these errors can be corrected with a modest amount of extra storage and logic. Quantum error correction schemes do exist but consume such a large number of qubits (quantum bits) that relatively few qubits remain for actual computation. That reduces the size of the computing task to a tiny fraction of what could run on defect-free hardware.

To put in perspective the importance of being stingy with qubit consumption, todays state-of-the-art, gate-based quantum computers, which use logic gates analogous to those forming the digital circuits found in the computer, smartphoneor tablet youre reading this article on, boast a mere 50 qubits. That is just a tiny fraction of the number of classical bits your device has available to it, typically hundreds of billions.

TAMING DEFECTS TO GET SOMETHING DONE

The trouble is, quantum mechanics challenges our intuition. So we struggle to figure out the best algorithms for performing meaningful tasks. To help overcome these problems, our team at Los Alamos National Laboratory is developing a method to invent and optimize algorithms that perform useful tasks on noisy quantum computers.

Algorithms are the lists of operations that tell a computer to do something, analogous to a cooking recipe. Compared to classical algorithms, the quantum kind are best kept as short as possible and, we have found, best tailored to the particular defects and noise regime of a given hardware device. That enables the algorithm to execute more processing steps within the constrained time frame before decoherence reduces the likelihood of a correct result to nearly zero.

In our interdisciplinary work on quantum computing at Los Alamos, funded by the Laboratory Directed Research and Development program, we are pursuing a key step in getting algorithms to run effectively. The main idea is to reduce the number of gates in an attempt to finish execution before decoherence and other sources of errors have a chance to unacceptably reduce the likelihood of success.

We use machine learning to translate, or compile, a quantum circuit into an optimally short equivalent that is specific to a particular quantum computer. Until recently, we have employed machine-learning methods on classical computers to search for shortened versions of quantum programs. Now, in a recent breakthrough, we have devised an approach that uses currently available quantum computers to compile their own quantum algorithms. That will avoid the massive computational overhead required to simulate quantum dynamics on classical computers.

Because this approach yields shorter algorithms than the state of the art, they consequently reduce the effects of noise. This machine-learning approach can also compensate for errors in a manner specific to the algorithm and hardware platform. It might find, for instance, that one qubit is less noisy than another, so the algorithm preferentially uses better qubits. In that situation, the machine learning creates a general algorithm to compute the assigned task on that computer using the fewest computational resources and the fewest logic gates. Thus optimized, the algorithm can run longer.

This method, which has worked in a limited setting on quantum computers now available to the public on the cloud, also takes advantage of quantum computers superior ability to scale-up algorithms for large problems on the larger quantum computers envisioned for the future.

New work with quantum algorithms will give both experts and nonexperts the tools to perform calculations on a quantum computer. Application developers can begin to take advantage of quantum computings potential for accelerating execution speed beyond the limits of conventional computing. These advances may bring us all several steps closer to having robust, reliable large-scale quantum computers to solve complex real-world problems that bring even the fastest classical computers to their knees.

Read more:
The Problem with Quantum Computers - Scientific American Blog Network

MIT researchers use quantum computing to observe entanglement – MIT News

  1. MIT researchers use quantum computing to observe entanglement  MIT News
  2. Did physicists create a wormhole in a quantum computer?  Nature.com
  3. A 'Wormhole' Built on a Quantum Computer Teleported Information as Predicted  ScienceAlert
  4. Google's quantum computer suggests that wormholes are real  Big Think
  5. A quantum computer has simulated a wormhole for the first time  New Scientist
  6. View Full Coverage on Google News

Follow this link:
MIT researchers use quantum computing to observe entanglement - MIT News