Archive for the ‘Quantum Computer’ Category

New quantum physics, solving puzzles of Wheeler’s delayed choice and a particle’s passing N slits simultaneously and quantum oscillator in experiments…

In photoelectric effect, light waves cannot knock electrons out; and in a photons passing through many slit experiment, a photon cannot pass through many slits at the same time. Namely, the two physical processes, respectively, reflect one aspect of wave-particle duality of quantum particle. On the other hand, in photoelectric effect, photons can knock electrons out; in the many slit experiment, a photon light wave can pass through many slits at the same time. The two physical processes then are complementarily equivalent in wave-particle duality of quantum particle. That is, in wave-particle duality of quantum particle, the first and the second cases use the particle property and the wave property, respectively. Namely, a photon can show as either particle or wave, but cannot be observed as both at the same time for a physics process.

We now generally show them by exact deduction.

In 4-dimensional momentum representation of quantum theory, when considering wave function (phi (vec{p},E)) of momentum representation, one has25

$$ psi (vec{r},t) = frac{1}{{(2pi hbar )^{2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{{i(vec{p} cdot vec{r} - tE)/hbar }} dvec{p}dE = frac{1}{{(2pi hbar )^{3/2} }}int_{ - infty }^{infty } {} varphi (vec{p},t)e^{{ivec{p} cdot vec{r}/hbar }} dvec{p} $$

(1)

Equation(1) is a general Fourier transformation of ( , phi (vec{p},E)) (about the plane wave energy E and momentum (vec{p})) from the four-dimensional momentum representation state vector ( , phi (vec{p},E)) to the projection of the plane wave basic vector (e^{{i(vec{p} cdot vec{r} - tE)/hbar }}) and making integration for getting ( , psi (vec{r},t)), which make ( , psi (vec{r},t)) have not only the characteristics of the probabilistic state vector of the particle but also the characteristics of the plane wave, i.e., make ( , psi (vec{r},t)) have the state vector characteristics of wave-particle duality.

Because the momentum representation state vector ( , phi (vec{p},E)) is nonlocal, it also reflects that the system has the global characteristics of momentum (vec{p}) and energy (E), this global property can be the integrity of the particle, e.g., even including different physics qualities, e.g., spin, since the different qualities are not related to space coordinates.

Therefore, the expression (1) exactly shows wave-particle dualitys origin which displays that the wave property is originating from the plane wave part of the general Fourier expansion, and the particle property is originating from the general Fourier expansion coefficients with the particles global property even including different spins.

Therefore, we discover, for arbitrary particle, on an aspect, it propagates with the plane wave of the four-dimensional momentum ((vec{p},E)) as the propagation amplitude of the plane wave; on another aspect, it moves as a particle with the four-dimensional momentum ((vec{p},E)). Especially, when the expanding coefficients have different spins, it moves as a particle with both the four-dimensional momentum ((vec{p},E)) and the different spins, which are the new true physics and the new physical pictures, and uncover the corresponding expressions contributions of both wave part and particle part of wave-particle duality origin. Namely, Eq.(1) is the function of unified expression of wave-particle duality.

A little bit of philosophical insight on what this work means that the unified expression of wave-particle duality is just the superposition state of wave-particle duality, and the superposition state of wave-particle duality is physically real.

Furthermore, the infinite big momenta and energy show their corresponding to infinite big velocity in Eq.(1), and then the infinite big velocity is included, i.e., the wave function (1) of coordinate representation has the contribution of infinite big momentum or speed, namely, the wave function at any spatial and time points has the contributions from negative to positive infinite big momenta or speeds. Similarly, when we do the inverse Fourier transformation of Eq.(1) about whole spacetime coordinates, we find that the wave function of 4-dimentional momentum representation has the contributions of the whole 4-dimentional spacetime, i.e., the wave function at any 4-dimentialal momentum spatial point has the contributions from the whole spacetime. Thus, the above both cases just the reasons that Feynman path integral can be done in whole 4-dimentional spacetime or momentum space.

Using Eq.(1), we have wave function of momentum representation at time t

$$ varphi (vec{p},t) = frac{1}{{(2pi hbar )^{1/2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{ - itE/hbar } dE $$

(2)

On the other hand, using Huygens' Principle, one has the basic wave analysis:

Every point of a wave front may be considered the source of secondary wavelets that spread out in all directions with a speed equal to the speed of propagation of the waves. What this means is that when one has a wave, he can view the "edge" of the wave as actually creating a series of circular waves. These waves combine together in most cases to just continue the propagation, and in some cases there are significant observable effects. The wave front can be viewed as the line tangent to all of these circular waves26.

Further using Eq.(1) and Huygens principle above, we have N subwave functions through N slits

$$ psi (vec{r}_{j} ,t) = frac{1}{{(2pi hbar )^{2} }}int_{ - infty }^{infty } {} phi (vec{p},E)e^{{i(vec{p} cdot vec{r}_{j} - tE)/hbar }} dvec{p}dE = frac{1}{{(2pi hbar )^{3/2} }}int_{ - infty }^{infty } {} varphi (vec{p},t)e^{{ivec{p} cdot vec{r}_{j} /hbar }} dvec{p} $$

(3)

where j=1,2,,N. No losing generality and for simplicity, taking N=2 just shows the up slit and down slit, respectively, in Young's Double Slits in Fig.2.

Interference of a particle plane wave in Young's double slit experiment.

Therefore, Eqs.(1)(3) can also be seen as a kind of expressions of Huygens principle. Consequently, these Fourier expansions physically imply new physics, and are not only just the mathematical tools.

The superposition density function of two subwaves is just Eq.(5) in Section Solutions to Wheelers delayed choice puzzle and puzzle of a particles passing double slits simultaneously by the physics processes of the exact quantum physics expressions, the interference terms of the two subwaves in Fig.2 are just the third term and fourth term in Eq.(5).

These properties are exactly conforming to the plane wave properties of the single particle, thus a particle plane wave can simultaneously pass through N slits, for simplicity, Young's Double Slits in Fig.2, Eq.(3) just generally give the both subwave functions that simultaneously pass through N slits, for simplicity, two slits s1 and s2 in Young's Double Slits, respectively.

The N subwave functions have the same amplitude (phi (vec{p},E)) for some certain (vec{p},E), (e^{{i(vec{p} cdot vec{r}_{j} - tE)/hbar }}) (j=1, 2,, N) are just N plane subwave functions in Eq.(3), and the N probabilistic wave functions in Eq.(3) integrate for ((vec{p},E)) from negative infinite to positive infinite, i.e., having considered all possibility, which make the N expressions (3) exact.

The global property of a particle does not allow the single particle to simultaneously pass through N slits, for simplicity, Young's double slits, in reality, the interference of a particle wave is observed, which just show a particle wave simultaneously does pass the N slits, for simplicity, the double slits, but all theories up to now cannot solve the hard puzzle of a particles passing the N slits, e.g., Youngs double slits simultaneously.

Link:
New quantum physics, solving puzzles of Wheeler's delayed choice and a particle's passing N slits simultaneously and quantum oscillator in experiments...

Briefing On Vitalik Buterins Long-Term Vision for The Ethereum Blockchain – Cryptopolitan

If you spend any time online, youve undoubtedly heard about Ethereum. Just as a reminder, Ethereum (ETH) is a decentralized blockchain platform. It can be used by anyone to create digital technology. Software developers are able to build applications in finance, advertising, identity management, gaming, and web browsing, to name a few. Ether is the cryptocurrency that fuels the network it allows it to operate. Like Bitcoin, Ether can be used for payments. There are so many companies that accept ETH, so you can spend your Ethereum anywhere. Ethereum brings real value.

Ethereum helps create a decentralized computer, which makes possible smart contracts and DApps. Smart contracts are special kinds of programs that run when predetermined conditions are met. They operate based upon an if, then logic. The apps run according to the given instructions, so theres no chance of latency, restriction, deceit, or third-party interference. DApps, also called decentralized applications, exist on the peer-to-peer network of computers. More often than not, theyre accessible via traditional web browsers such as Google Chrome and Firefox.

As opposed to Bitcoin, which has a limited scripting language, ETH runs on Solidity, which creates machine-level code and incorporates it within the Ethereum Virtual Machine. Its similar in nature to C++ and pretty simple to learn. The Ethereum blockchain is capable of executing code of unmatched complexity. Ethereum 1.0 was an attempt to build a world computer. Ethereum 2.0 will be the world computer. It may subsume the functions of the Internet as we know it. What is certain is that the Merge will make a difference as regards the Ethereum ecosystem (and more than that).

At the time of the launch, Ethereum was one of the most formidable projects in the crypto space. Vitalik Buterin and his supporters wanted to change how the Internet works. Many argue that Ethereum is the Internets next step. Ethereum 2.0, the upgrade to the blockchain network, will improve the speed, efficiency, and scalability of the network. ETH will be used by more and more people. The transition to the Ethereum 2.0 world has been slow, though. In spite of this, adoption is still growing. Compared to other cryptocurrencies, the transaction volume is higher.

For the time being, the priority is to address the restrictions of proof-of-work. The platform is moving to the proof-of-stake consensus mechanism, which promises to use less energy (approx. 99% less) and help reach 100 000 transactions per second. Validators are chosen based on the number of tokens they possess. Those who spend money on coins practically invest in the networks continued success. Validators cant corrupt the system, as proof-of-stake has checks and balances in place to prevent this from happening.

Theres so much traffic on the Ethereum blockchain, and this overload can result in high transaction fees. The solution to this problem is simple: layer-2 chains. Chains like Polygon complete more transactions per second with lower gas fees. Speaking of which, Polygon is the most widely adopted layer-2 solution for ETH. It processes transactions outside the mainnet, which explains the increased throughput. In case you didnt know, Ethereums layer-2 solutions fall under several categories, namely channels, plasma, sidechains, rollups, and validium. Many of them are undergoing research, testing, and implementation.

As highlighted by Vitalik Buterin, soon enough, Ethereum will be run on a full node using lighter hardware. A single piece of client software will be enough to run a full node. When a transaction is added to the blockchain network, the full node validates the transaction and ascertains it complies with the Ethereum specification. The full node prunes its blockchain to save disk space. Thus, full nodes dont store data back to genesis. Most laptops are eligible for being full nodes. The more nodes in existence, the more unlikely it is for a cyberattack to succeed.

Cryptocurrencies achieve decentralized security and trust. Cryptography is the pillar of cryptocurrency processing. Encrypted information that is transmitted with an algorithm can be deciphered by a quantum computer, so threat actors can intercept that information. Quantum-resistant cryptography can protect data from threats down the road. Vitalik Buterin is looking ahead into the future and plans to upgrade the Ethereum platform for quantum resistance. Its believed there are several years ahead until ETH will experience a threat to its current cryptographic signatures, but its better to be safe than sorry.

Ethereum wont hide from quantum computers, so dont rush to sell your Ether just yet. Try to imagine what it will become in the future. Wise investors dont sell their coins. Quite the opposite, actually. They withdraw liquidity from exchanges like Binance, which has a positive effect on the Ethereum price. Getting back on topic, competitions are constantly organized for researchers to standardize new cryptographic protocols that protect against quantum attackers. Better protocols are needed for improving zero-knowledge proofs. The Ethereum Virtual Machine generates zero-knowledge proofs to guarantee the correctness of programs. ZPK systems can be post-quantum secure.

Given the current and planner improvements to the Ethereum blockchain, Ethereum might well become the dominant chain as far as transaction volumes are concerned. As the platform increases its efficiency, it might work alongside multichain technologies. The emergence of a highly competitive ecosystem will enable ETH to expand its capacity and allow for remarkable results. The one wont replace the other, that is for sure. Down the line, there will be more vertically focused blockchains for specific use cases, including healthcare and gaming.

All in all, Ethereum is working towards solving its problems. As businesses get funded via Ether, an ever-increasing number of people will become familiar with the digital asset. Startups that have raised money through an ICO will end up surviving in the long term and help promote the mainstream adoption of cryptocurrencies. Well just have to wait and see what the future holds for ETH. Good things dont come easy.

Read more from the original source:
Briefing On Vitalik Buterins Long-Term Vision for The Ethereum Blockchain - Cryptopolitan

The Bionic-Hand Arms Race – IEEE Spectrum

In Jules Vernes 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the wars end, with not quite one arm between four persons, and exactly two legs between six, these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesnt simply overcome his disability; he derives power and ambition from it. Their crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses dont play leading roles in their personalitiesthey are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

As Verne understood, the U.S. Civil War (during which 60,000 amputations were performed) inaugurated the modern prosthetics era in the United States, thanks to federal funding and a wave of design patents filed by entrepreneurial prosthetists. The two World Wars solidified the for-profit prosthetics industry in both the United States and Western Europe, and the ongoing War on Terror helped catapult it into a US $6 billion dollar industry across the globe. This recent investment is not, however, a result of a disproportionately large number of amputations in military conflict: Around 1,500 U.S. soldiers and 300 British soldiers lost limbs in Iraq and Afghanistan. Limb loss in the general population dwarfs those figures. In the United States alone, more than 2 million people live with limb loss, with 185,000 people receiving amputations every year. A much smaller subsetbetween 1,500 to 4,500 children each yearare born with limb differences or absences, myself included.

Today, the people who design prostheses tend to be well-intentioned engineers rather than amputees themselves. The fleshy stumps of the world act as repositories for these designers dreams of a high-tech, superhuman future. I know this because throughout my life I have been fitted with some of the most cutting-edge prosthetic devices on the market. After being born missing my left forearm, I was one of the first cohorts of infants in the United States to be fitted with a myoelectric prosthetic hand, an electronic device controlled by the wearers muscles tensing against sensors inside the prosthetic socket. Since then, I have donned a variety of prosthetic hands, each of them striving toward perfect fidelity of the human handsometimes at a cost of aesthetics, sometimes a cost of functionality, but always designed to mimic and replace what was missing.

In my lifetime, myoelectric hands have evolved from clawlike constructs to multigrip, programmable, anatomically accurate facsimiles of the human hand, most costing tens of thousands of dollars. Reporters cant get enough of these sophisticated, multigrasping bionic hands with lifelike silicone skins and organic movements, the unspoken promise being that disability will soon vanish and any lost limb or organ will be replaced with an equally capable replica. Prosthetic-hand innovation is treated like a high-stakes competition to see what is technologically possible. Tyler Hayes, CEO of the prosthetics startup Atom Limbs, put it this way in a WeFunder video that helped raise $7.2 million from investors: Every moonshot in history has started with a fair amount of crazy in it, from electricity to space travel, and Atom Limbs is no different.

We are caught in a bionic-hand arms race. But are we making real progress? Its time to ask who prostheses are really for, and what we hope they will actually accomplish. Each new multigrasping bionic hand tends to be more sophisticated but also more expensive than the last and less likely to be covered (even in part) by insurance. And as recent research concludes, much simpler and far less expensive prosthetic devices can perform many tasks equally well, and the fancy bionic hands, despite all of their electronic options, are rarely used for grasping.

Activity arms, such as this one manufactured by prosthetics firm Arm Dynamics, are less expensive and more durable than bionic prostheses. The attachment from prosthetic-device company Texas Assistive Devices rated for very heavy weights, allowing the author to perform exercises that would be risky or impossible with her much more expensive iLimb bionic arm.Gabriela Hasbun; Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In recent decades, the overwhelming focus of research into and development of new artificial hands has been on perfecting different types of grasps. Many of the most expensive hands on the market differentiate themselves by the number and variety of selectable prehensile grips. My own media darling of a hand, the iLimb from Ottobock, which I received in 2018, has a fist-shaped power grip, pinching grips, and one very specific mode with thumb on top of index finger for politely handing over a credit card. My 21st-century myoelectric hand seemed remarkableuntil I tried using it for some routine tasks, where it proved to be more cumbersome and time consuming than if I had simply left it on the couch. I couldnt use it to pull a door shut, for example, a task I can do with my stump. And without the extremely expensive addition of a powered wrist, I couldnt pour oatmeal from a pot into a bowl. Performing tasks the cool bionic way, even though it mimicked having two hands, wasnt obviously better than doing things my way, sometimes with the help of my legs and feet.

When I first spoke with Ad Spiers, lecturer in robotics and machine learning at Imperial College London, it was late at night in his office, but he was still animated about robotic handsthe current focus of his research. Spiers says the anthropomorphic robotic hand is inescapable, from the reality of todays prosthetics to the fantasy of sci-fi and anime. In one of my first lectures here, I showed clips of movies and cartoons and how cool filmmakers make robot hands look, Spiers says. In the anime Gundam, there are so many close-ups of gigantic robot hands grabbing things like massive guns. But why does it need to be a human hand? Why doesnt the robot just have a gun for a hand?

Its time to ask who prostheses are really for, and what we hope they will actually accomplish.

Spiers believes that prosthetic developers are too caught up in form over function. But he has talked to enough of them to know they dont share his point of view: I get the feeling that people love the idea of humans being great, and that hands are what make humans quite unique. Nearly every university robotics department Spiers visits has an anthropomorphic robot hand in development. This is what the future looks like, he says, and he sounds a little exasperated. But there are often better ways.

The vast majority of people who use a prosthetic limb are unilateral amputeespeople with amputations that affect only one side of the bodyand they virtually always use their dominant fleshy hand for delicate tasks such as picking up a cup. Both unilateral and bilateral amputees also get help from their torsos, their feet, and other objects in their environment; rarely are tasks performed by a prosthesis alone. And yet, the common clinical evaluations to determine the success of a prosthetic are based on using only the prosthetic, without the help of other body parts. Such evaluations seem designed to demonstrate what the prosthetic hand can do rather than to determine how useful it actually is in the daily life of its user. Disabled people are still not the arbiters of prosthetic standards; we are still not at the heart of design.

The Hosmer Hook [left], originally designed in 1920, is the terminal device on a body-powered design that is still used today. A hammer attachment [right] may be more effective than a gripping attachment when hammering nails into wood.Left: John Prieto/The Denver Post/Getty Images; Right: Hulton-Deutsch Collection/Corbis/Getty Images

To find out how prosthetic users live with their devices, Spiers led a study that used cameras worn on participants heads to record the daily actions of eight people with unilateral amputations or congenital limb differences. The study, published last year in IEEE Transactions on Medical Robotics and Bionics, included several varieties of myoelectric hands as well as body-powered systems, which use movements of the shoulder, chest, and upper arm transferred through a cable to mechanically operate a gripper at the end of a prosthesis. The research was conducted while Spiers was a research scientist at Yale Universitys GRAB Lab, headed by Aaron Dollar. In addition to Dollar, he worked closely with grad student Jillian Cochran, who coauthored the study.

Watching raw footage from the study, I felt both sadness and camaraderie with the anonymous prosthesis users. The clips show the clumsiness, miscalculations, and accidental drops that are familiar to even very experienced prosthetic-hand users. Often, the prosthesis simply helps brace an object against the body to be handled by the other hand. Also apparent was how much time people spent preparing their myoelectric prostheses to carry out a taskit frequently took several extra seconds to manually or electronically rotate the wrists of their devices, line up the object to grab it just right, and work out the grip approach.The participant who hung a bottle of disinfectant spray on their hook hand while wiping down a kitchen counter seemed to be the one who had it all figured out.

In the study, prosthetic devices were used on average for only 19 percent of all recorded manipulations. In general, prostheses were employed in mostly nonprehensile actions, with the other, intact hand doing most of the grasping. The study highlighted big differences in usage between those with nonelectric, body-powered prosthetics and those with myoelectric prosthetics. For body-powered prosthetic users whose amputation was below the elbow, nearly 80 percent of prosthesis usage was nongrasping movementpushing, pressing, pulling, hanging, and stabilizing. For myoelectric users, the device was used for grasping just 40 percent of the time.

In the United States alone, more than 2 million people live with limb loss, and 185,000 people receive amputations every year.

More tellingly, body-powered users with nonelectric grippers or split hooks spent significantly less time performing tasks than did users with more complex prosthetic devices. Spiers and his team noted the fluidity and speed with which the former went about doing tasks in their homes. They were able to use their artificial hands almost instantaneously and even experience direct haptic feedback through the cable that drives such systems. The research also revealed little difference in use between myoelectric single-grasp devices and fancier myoelectric multiarticulated, multigrasp handsexcept that users tended to avoid hanging objects from their multigrasp hands, seemingly out of fear of breaking them.

We got the feeling that people with multigrasp myoelectric hands were quite tentative about their use, says Spiers. Its no wonder, since most myoelectric hands are priced over $20,000, are rarely approved by insurance, require frequent professional support to change grip patterns and other settings, and have costly and protracted repair processes. As prosthetic technologies become more complex and proprietary, the long-term serviceability is an increasing concern. Ideally, the device should be easily fixable by the user. And yet some prosthetic startups are pitching a subscription model, in which users continue to pay for access to repairs and support.

Despite the conclusions of his study, Spiers says the vast majority of prosthetics R&D remains focused on refining the grasping modes of expensive, high-tech bionic hands. Even beyond prosthetics, he says, manipulation studies in nonhuman primate research and robotics are overwhelmingly concerned with grasping: Anything that isnt grasping is just thrown away.

TRS makes a wide variety of body-powered prosthetic attachments for different hobbies and sports. Each attachment is specialized for a particular task, and they can be easily swapped for a variety of activities. Fillauer TRS

If weve decided that what makes us human is our hands, and what makes the hand unique is its ability to grasp, then the only prosthetic blueprint we have is the one attached to most peoples wrists. Yet the pursuit of the ultimate five-digit grasp isnt necessarily the logical next step. In fact, history suggests that people havent always been fixated on perfectly re-creating the human hand.

As recounted in the 2001 essay collection Writing on Hands: Memory and Knowledge in Early Modern Europe, ideas about the hand evolved over the centuries. The soul is like the hand; for the hand is the instrument of instruments, Aristotle wrote in De Anima. He reasoned that humanity was deliberately endowed with the agile and prehensile hand because only our uniquely intelligent brains could make use of itnot as a mere utensil but a tool for apprehensio, or grasping, the world, literally and figuratively.

More than 1,000 years later, Aristotles ideas resonated with artists and thinkers of the Renaissance. For Leonardo da Vinci, the hand was the brains mediator with the world, and he went to exceptional lengths in his dissections and illustrations of the human hand to understand its principal components. His meticulous studies of the tendons and muscles of the forearm and hand led him to conclude that although human ingenuity makes various inventionsit will never discover inventions more beautiful, more fitting or more direct than nature, because in her inventions nothing is lacking and nothing is superfluous.

Da Vincis illustrations precipitated a wave of interest in human anatomy. Yet for all of the studious rendering of the human hand by European masters, the hand was regarded more as an inspiration than as an object to be replicated by mere mortals. In fact, it was widely accepted that the intricacies of the human hand evidenced divine design. No machine, declared the Christian philosopher William Paley, is more artificial, or more evidently so than the flexors of the hand, suggesting deliberate design by God.

Performing tasks the cool bionic way, even though it mimicked having two hands, wasnt obviously better than doing things my way, sometimes with the help of my legs and feet.

By the mid-1700s, with the Industrial Revolution in the global north, a more mechanistic view of the world began to emerge, and the line between living things and machines began to blur. In her 2003 article Eighteenth-Century Wetware, Jessica Riskin, professor of history at Stanford University, writes, The period between the 1730s and the 1790s was one of simulation, in which mechanicians tried earnestly to collapse the gap between animate and artificial machinery. This period saw significant changes in the design of prosthetic limbs. While mechanical prostheses of the 16th century were weighed down with iron and springs, a 1732 body-powered prosthesis used a pulley system to flex a hand made of lightweight copper. By the late 18th century, metal was being replaced with leather, parchment, and corksofter materials that mimicked the stuff of life.

The techno-optimism of the early 20th century brought about another change in prosthetic design, says Wolf Schweitzer, a forensic pathologist at the Zurich Institute of Forensic Medicine and an amputee. He owns a wide variety of contemporary prosthetic arms and has the necessary experience to test them. He notes that anatomically correct prosthetic hands have been carved and forged for the better part of 2,000 years. And yet, he says, the 20th centurys body-powered split hook is more modern, its design more willing to break the mold of the human hand.

The body powered armin terms of its symbolism(still) expresses the man-machine symbolism of an industrial society of the 1920s, writes Schweitzer in his prosthetic arm blog, when man was to function as clockwork cogwheel on production lines or in agriculture. In the original 1920s design of the Hosmer Hook, a loop inside the hook was placed just for tying shoes and another just for holding cigarettes. Those designs, Ad Spiers told me, were incredibly functional, function over form. All pieces served a specific purpose.

Schweitzer believes that as the need for manual labor decreased over the 20th century, prostheses that were high-functioning but not naturalistic were eclipsed by a new high-tech vision of the future: bionic hands. In 2006, the U.S. Defense Advanced Research Projects Agency launched Revolutionizing Prosthetics, a research initiative to develop the next generation of prosthetic arms with near-natural control. The $100 million program produced two multi-articulating prosthetic arms (one for research and another that costs over $50,000). More importantly, it influenced the creation of other similar prosthetics, establishing the bionic handas the military imagined itas the holy grail in prosthetics. Today, the multigrasp bionic hand is hegemonic, a symbol of cyborg wholeness.

And yet some prosthetic developers are pursuing a different vision. TRS, based in Boulder, Colo., is one of the few manufacturers of activity-specific prosthetic attachments, which are often more durable and more financially accessible than robotic prosthetics. These plastic and silicone attachments, which include a squishy mushroom-shaped device for push-ups, a ratcheting clamp for lifting heavy weights, and a concave fin for swimming, have helped me experience the greatest functionality I have ever gotten out of a prosthetic arm.

Such low-tech activity prostheses and body-powered prostheses perform astonishingly well, for a tiny fraction of the cost of bionic hands. They dont look or act like human hands, and they function all the better for it. According to Schweitzer, body-powered prostheses are regularly dismissed by engineers as arcane or derisively called Captain Hook. Future bionic shoulders and elbows may make a huge difference in the lives of people missing a limb up to their shoulder, assuming those devices can be made robust and affordable. But for Schweitzer and a large percentage of users dissatisfied with their myoelectric prosthesis, the prosthetic industry has yet to provide anything fundamentally better or cheaper than body-powered prostheses.

Bionic hands seek to make disabled people whole, to have us participate in a world that is culturally two-handed. But its more important that we get to live the lives we want, with access to the tools we need, than it is to make us look like everyone else. While many limb-different people have used bionic hands to interact with the world and express themselves, the centuries-long effort to perfect the bionic hand rarely centers on our lived experiences and what we want to do in our lives.

Weve been promised a breakthrough in prosthetic technology for the better part of 100 years now. Im reminded of the scientific excitement around lab-grown meat, which seems simultaneously like an explosive shift and a sign of intellectual capitulation, in which political and cultural change is passed over in favor of a technological fix. With the cast of characters in the world of prostheticsdoctors, insurance companies, engineers, prosthetists, and the militaryplaying the same roles they have for decades, its nearly impossible to produce something truly revolutionary.

In the meantime, this metaphorical race to the moon is a mission that has forgotten its original concern: helping disabled people acquire and use the tools they want. There are inexpensive, accessible, low-tech prosthetics that are available right now and that need investments in innovation to further bring down costs and improve functionality. And in the United States at least, there is a broken insurance system that needs fixing. Releasing ourselves from the bionic-hand arms race can open up the possibilities of more functional designs that are more useful and affordable, and might help us bring our prosthetic aspirations back down to earth.

Go here to read the rest:
The Bionic-Hand Arms Race - IEEE Spectrum

What is Quantum Computing and How Can it Help Mitigate Climate Change? – EARTH.ORG

Quantum Computing refers to a new form of computation based on quantum physics. It is expected to outperform classical computers in processing data and deriving optimisation from it. This technology can be widely adopted in the environmental sector, including enhancing the performance of energy sources and optimising urban planning.

The classical computers that we use in our daily lives are beneficial to the development of humanity. Yet, these are being slowly substituted by increasingly sophisticated machines.

One problem that classical computers are so bad at solving is optimisation. For instance, how many possible combinations are there to configure the seats of 10 people around a table? The answer is 10, equivalent to about 3.6 million combinations. When the number of seats keeps increasing, the number of possible combinations multiplies. In order to find the optimal arrangement of the seats, we first need a list of criteria that determines the optimal arrangement. However, the most energy- and time-consuming part is that the classical computers need to simulate each combination to generate a result. Depending on the scale of the data, it may take an extremely long time for classical computers to generate a result. Yet, quantum computers have the potential to solve problems in just minutes.

The basic unit of information for classical computers is called a binary digit also commonly known as bit. A bit is either 1 or 0. If there are two bits in a row, there will be four possible combinations 00, 01, 10, and 11. Therefore, classical computers need to simulate four times to generate a result.

On the other hand, the basic unit of information for quantum computers is called a qubit. A qubit is not either 1 or 0. Instead, it exists in a superposition of 1 and 0. In other words, it is simultaneously a 1 and a 0. Therefore, two qubits in a row are in a superposition of four states 00, 01, 10, and 11. Why is it revolutionary? Well, being in a superposition of all states suggests that, theoretically, quantum computers are only required to simulate once to generate a result. It only takes a few attempts to find the optimal arrangement of 10 seats within more than 3.6 million combinations.

You might also like: 4 Commonly-Used Smart City Technologies

Quantum computing can be adopted in any field that requires optimisation; it can be about enhancing the performance of an energy source as well as about developing a smart city where the consumption of energy is minimised.

One example is the quadratic assignment problem (QAP), a mathematical problem that classical computers perform badly. Suppose there are n of facilities and n of locations, and you are required to configure one facility in each location to minimize the consumption of energy. Logically, if we need to transport frequently a lot of goods between two facilities, we would like to place them closer, and vice versa. A study has compared the performance of a quantum computer and a classical computer in solving the quadratic assignment problem by giving them data from 20 facilities and locations. As a result, the quantum computer generated an accurate answer in about 700 seconds whereas the classical computer failed to do so within the time limit of 12 hours. This study demonstrates the huge potential of quantum computing to optimize urban planning to minimize the consumption of energy.

In addition to its functions, quantum computing by itself is an environmentally friendly technology. According to a study jointly published by NASA, Google, and Oak Ridge National Laboratory, a quantum computer required only 0.002% of the energy consumed by a classical computer to perform the same task. The energy consumed by computers is enormous; not including the energy consumed by normal peoples computers and smartphones, data centres themselves already account for more than 1% of global electricity. If data can be stored in terms of qubits, we can save up a huge amount of energy.

The worlds most powerful quantum computer now is the Eagle, developed by the International Business Machines Corporation (IBM) with a capacity of 127 qubits. However, scientists suggest that quantum computers are not commercially useful if their capacity does not reach at least 1,000 qubits. The slow development of quantum computers is mainly due to the technical difficulties in building them.

Scientists are required to manipulate particles as small as electrons in order to make qubits. Electrons need to be maintained in coherence, meaning the state in which the waves of the electrons can coherently interfere with each other. Yet, electrons are highly sensitive to the outside environment, like noise and temperature. Therefore, the manufacturing of qubits is usually done in an isolated environment from the outside world that runs at near absolute zero. Since the movement of atoms is at their lowest state of energy at absolute zero, keeping the electrons at such a temperature helps them to be stable and less affected by the outside environment. This is a way to mitigate the occurrence of decoherence. Yet, we still do not have a clear method to correct decoherence when it occurred because exterior interference may destroy the remaining coherence of other electrons.

Although quantum computing is still at the stage of development, we have already witnessed an enormous improvement in this field since its birth as a theory in the 1980s. Quantum Computing may be the next greatest advancement in humanity, from developing medicines for different incurable diseases by tracking the molecular data of human bodies that classical computers cannot do, to optimising the energy efficiency of cities, countries, and even the world.

You might also like: Top 7 Smart Cities in the World and How They Do It

Originally posted here:
What is Quantum Computing and How Can it Help Mitigate Climate Change? - EARTH.ORG

Amid Challenges, the UK Government Continues to Fund Quantum Success – Quantum Computing Report

By Carolyn Mathas

The UK touts itself as a world leader in quantum technologies and the truth is, they actually are. At the center of the UKs quantum effort is coming at the technology from a national position. The UK has been very strong where academia meets industry, and the country has a good track record of funding and then commercializing research. Much effort has lately been spent on training those that have little experience of computer engineering and recruiting mathematicians and computer scientists who are unfamiliar with quantum technologies, and the efforts are bearing fruit.

One organization, UK Research and Innovation (UKRI) is the largest public funder of research and innovation in the UK, is armed with a budget of more than 8 billion. UKRI is comprised of seven disciplinary research councils, Research England and Innovate UKhome to the industrial challenge on quantum.

The Quantum Technologies Challenge at UKRI was launched in 2018 under the Industrial Strategy Challenge Fund, receiving 173 million of funding. It provides catalytic grant funding for strategic collaborative projects and in doing so we encourage companies to work closely with universities and with each other. This community has, in three years, created new companies, launched new products and raised hundreds of millions of pounds of investment. Its success is linked to:

According to Roger McKinlay,Commercialising Quantum TechnologiesChallengeDirector for UKRI. On a global scale, were seeing enormous capital private capital flowing in. There is a vibrant community of start-up companies that are aiming to build the quantum computers of the future emerging predominantly from the UKs academic sector and driving excellent technical work. They are starting to raise significant investment on the back of robust and credible business models. Compared to a year ago, more money is flowing into quantum start-ups partly through collaborative research projects funded by government-backed programs, but also from increased interest among investment firms.

Increased interest has been driven in part by the mergerbetween UKs Cambridge Quantum and Honeywell Quantum Solutions that formed the worlds largest integrated quantum-computing company called Quantinuum. Other start-up firms report increased interest from venture capitalists, which together with government R&D grants is allowing even very young companies to expand rapidly.

When comparing the UKs efforts to the U.S., Youre in a slightly different situation in the US, because we dont have those tech giants. In the UK we must allow private investors the freedom to invest in what they need have to win, otherwise the UK wont be attractive. However, you also must publicly invest to keep a seat at the table so that the UK is getting sovereign control over what it needs to influence standards and to attract the right talent. This is a difficult game is and its a highly national-specific game, McKinlay explained.

While clearly the UKs efforts under UKRI have been successful, there is now uncertainty as to how it will be able to retain its research efforts and its researchers.

Theres a perfect storm brewing surrounding the funding of the UKs scientific community. Against the backdrop of the Prime Minister Boris Johnson stepping down and Science Minister George Freemans resignation, both posts are unfilled until September. Economically, the country is, along with the rest of the world, facing the inflation in 40 years, as energy costs continue to soar.

The major issue, of course, is access to the EUs flagship research program Horizon Europe. There was a deal between the UK and the EU on the table for the past two years. It enabled the UK to be an associate member of Horizon Europe. This gave UK researchers equal rights to those researchers in EU countries. Negotiations have faltered based on politics between the UK and the EU over a border implementation between the Republic of Ireland, a part of the EU and Northern Ireland, a part of the UK. Whats at stake if negotiations fail is daunting, and includes:

Based on the failed negotiations, the UK created a Plan B alternative to Horizon Europe, publishing details in apolicy paper, titledSupporting UK R&D and Collaborative Research Beyond European Programmes.

The UK, however, consistently maintains that it does not want to leave Horizon programs as it will clearly hamstring its research efforts in the near term. For example, it will take a lot of time and work to form new relationships and begin collaborating with such other countries as Australia, Japan, India, etc. as well as maintaining collaboration within the companies and countries in Europe.

What is likely, however, is that nothing will happen until a new Prime Minister is seated. At that point, the future of UKs Horizon access is likely to be announced, or the UKs international research program, Plan B will go forward.

Amid all of the uncertainty, the UK is still well-positioned to be a major player in the quantum industry. It has been doing over the past two years what several countries are just beginning. Its infrastructure to succeed is in place. Could the Horizon uncertainty cause a ripple in the UKs efforts? Of course. But its one that they will likely iron out quickly.

August 22, 2022

See the rest here:
Amid Challenges, the UK Government Continues to Fund Quantum Success - Quantum Computing Report