Archive for the ‘Quantum Computer’ Category

Clever Combination of Quantum Physics and Molecular Biology – SciTechDaily

Illustration of a quantum wave packet in close vicinity of a conical intersection between two potential energy surfaces. The wave packet represents the collective motion of multiple atoms in the photoactive yellow protein. A part of the wave packet moves through the intersection from one potential energy surface to the other, while another part remains on the top surface, leading to a superposition of quantum states. Credit: DESY, Niels Breckwoldt

A new analytical technique is able to provide hitherto unattainable insights into the extremely rapid dynamics of biomolecules. The team of developers, led by Abbas Ourmazd from the University of WisconsinMilwaukee and Robin Santra from DESY, is presenting its clever combination of quantum physics and molecular biology in the scientific journal Nature. The scientists used the technique to track the way in which the photoactive yellow protein (PYP) undergoes changes in its structure in less than a trillionth of a second after being excited by light.

In order to precisely understand biochemical processes in nature, such as photosynthesis in certain bacteria, it is important to know the detailed sequence of events, Santra explains their underlying motivation. When light strikes photoactive proteins, their spatial structure is altered, and this structural change determines what role a protein takes on in nature. Until now, however, it has been almost impossible to track the exact sequence in which structural changes occur. Only the initial and final states of a molecule before and after a reaction can be determined and interpreted in theoretical terms. But we dont know exactly how the energy and shape changes in between the two, says Santra. Its like seeing that someone has folded their hands, but you cant see them interlacing their fingers to do so.

Whereas a hand is large enough and the movement is slow enough for us to follow it with our eyes, things are not that easy when looking at molecules. The energy state of a molecule can be determined with great precision using spectroscopy; and bright X-rays for example from an X-ray laser can be used to analyze the shape of a molecule. The extremely short wavelength of X-rays means that they can resolve very small spatial structures, such as the positions of the atoms within a molecule. However, the result is not an image like a photograph, but instead a characteristic interference pattern, which can be used to deduce the spatial structure that created it.

Since the movements are extremely rapid at the molecular level, the scientists have to use extremely short X-ray pulses to prevent the image from being blurred. It was only with the advent of X-ray lasers that it became possible to produce sufficiently bright and short X-ray pulses to capture these dynamics. However, since molecular dynamics takes place in the realm of quantum physics where the laws of physics deviate from our everyday experience, the measurements can only be interpreted with the help of a quantum-physical analysis.

A peculiar feature of photoactive proteins needs to be taken into consideration: the incident light excites their electron shell to enter a higher quantum state, and this causes an initial change in the shape of the molecule. This change in shape can in turn result in the excited and ground quantum states overlapping each other. In the resulting quantum jump, the excited state reverts to the ground state, whereby the shape of the molecule initially remains unchanged. The conical intersection between the quantum states therefore opens a pathway to a new spatial structure of the protein in the quantum mechanical ground state.

The team led by Santra and Ourmazd has now succeeded for the first time in unraveling the structural dynamics of a photoactive protein at such a conical intersection. They did so by drawing on machine learning because a full description of the dynamics would in fact require every possible movement of all the particles involved to be considered. This quickly leads to unmanageable equations that cannot be solved.

The photoactive yellow protein we studied consists of some 2000 atoms, explains Santra, who is a Lead Scientist at DESY and a professor of physics at Universitt Hamburg. Since every atom is basically free to move in all three spatial dimensions, there are a total of 6000 options for movement. That leads to a quantum mechanical equation with 6000 dimensions which even the most powerful computers today are unable to solve.

However, computer analyses based on machine learning were able to identify patterns in the collective movement of the atoms in the complex molecule. Its like when a hand moves: there, too, we dont look at each atom individually, but at their collective movement, explains Santra. Unlike a hand, where the possibilities for collective movement are obvious, these options are not as easy to identify in the atoms of a molecule. However, using this technique, the computer was able to reduce the approximately 6000 dimensions to four. By demonstrating this new method, Santras team was also able to characterize a conical intersection of quantum states in a complex molecule made up of thousands of atoms for the first time.

The detailed calculation shows how this conical intersection forms in four-dimensional space and how the photoactive yellow protein drops through it back to its initial state after being excited by light. The scientists can now describe this process in steps of a few dozen femtoseconds (quadrillionths of a second) and thus advance the understanding of photoactive processes. As a result, quantum physics is providing new insights into a biological system, and biology is providing new ideas for quantum mechanical methodology, says Santra, who is also a member of the Hamburg Cluster of Excellence CUI: Advanced Imaging of Matter. The two fields are cross-fertilizing each other in the process.

Reference: Few-fs resolution of a photoactive protein traversing a conical intersection by A. Hosseinizadeh, N. Breckwoldt, R. Fung, R. Sepehr, M. Schmidt, P. Schwander, R. Santra and A. Ourmazd, 3 November 2021, Nature.DOI: 10.1038/s41586-021-04050-9

See the article here:
Clever Combination of Quantum Physics and Molecular Biology - SciTechDaily

What next? 22 emerging technologies to watch in 2022 – The Economist

Nov 8th 2021

by By the Science and technology correspondents of The Economist

The astonishingly rapid development and rollout of coronavirus vaccines has been a reminder of the power of science and technology to change the world. Although vaccines based on new mRNA technology seemed to have been created almost instantly, they actually drew upon decades of research going back to the 1970s. As the saying goes in the technology industry, it takes years to create an overnight success. So what else might be about to burst into prominence? Here are 22 emerging technologies worth watching in 2022

It sounds childishly simple. If the world is getting too hot, why not offer it some shade? The dust and ash released into the upper atmosphere by volcanoes is known to have a cooling effect: Mount Pinatubos eruption in 1991 cooled the Earth by as much as 0.5C for four years. Solar geoengineering, also known as solar radiation management, would do the same thing deliberately.

This is hugely controversial. Would it work? How would rainfall and weather patterns be affected? And wouldnt it undermine efforts to curb greenhouse-gas emissions? Efforts to test the idea face fierce opposition from politicians and activists. In 2022, however, a group at Harvard University hopes to conduct a much-delayed experiment called SCoPEX. It involves launching a balloon into the stratosphere, with the aim of releasing 2kg of material (probably calcium carbonate), and then measuring how it dissipates, reacts and scatters solar energy.

Proponents argue that it is important to understand the technique, in case it is needed to buy the world more time to cut emissions. The Harvard group has established an independent advisory panel to consider the moral and political ramifications. Whether the test goes ahead or not, expect controversy.

Keeping buildings warm in winter accounts for about a quarter of global energy consumption. Most heating relies on burning coal, gas or oil. If the world is to meet its climate-change targets, that will have to change. The most promising alternative is to use heat pumpsessentially, refrigerators that run in reverse.

Instead of pumping heat out of a space to cool it down, a heat pump forces heat in from the outside, warming it up. Because they merely move existing heat around, they can be highly efficient: for every kilowatt of electricity consumed, heat pumps can deliver 3kW of heat, making them cheaper to run than electric radiators. And running a heat pump backwards cools a home rather than heating it.

Gradient, based in San Francisco, is one of several companies offering a heat pump that can provide both heating and cooling. Its low-profile, saddle-bag shaped products can be mounted in windows, like existing air conditioners, and will go on sale in 2022.

Electrifying road transport is one thing. Aircraft are another matter. Batteries can only power small aircraft for short flights. But might electricity from hydrogen fuel cells, which excrete only water, do the trick? Passenger planes due to be test-flown with hydrogen fuel cells in 2022 include a two-seater being built at Delft University of Technology in the Netherlands. ZeroAvia, based in California, plans to complete trials of a 20-seat aircraft, and aims to have its hydrogen-propulsion system ready for certification by the end of the year. Universal Hydrogen, also of California, hopes its 40-seat plane will take off in September 2022.

Carbon dioxide in the atmosphere causes global warming. So why not suck it out using machines? Several startups are pursuing direct air capture (DAC), a technology that does just that. In 2022 Carbon Engineering, a Canadian firm, will start building the worlds biggest DAC facility in Texas, capable of capturing 1m tonnes of CO2 per year. ClimeWorks, a Swiss firm, opened a DAC plant in Iceland in 2021, which buries captured CO2 in mineral form at a rate of 4,000 tonnes a year. Global Thermostat, an American firm, has two pilot plants. DAC could be vital in the fight against climate change. The race is on to get costs down and scale the technology up.

A new type of agriculture is growing. Vertical farms grow plants on trays stacked in a closed, controlled environment. Efficient LED lighting has made the process cheaper, though energy costs remain a burden. Vertical farms can be located close to customers, reducing transport costs and emissions. Water use is minimised and bugs are kept out, so no pesticides are needed.

In Britain, the Jones Food Company will open the worlds largest vertical farm, covering 13,750 square metres, in 2022. AeroFarms, an American firm, will open its largest vertical farm, in Daneville, Virginia. Other firms will be expanding, too. Nordic Harvest will enlarge its facility just outside Copenhagen and construct a new one in Stockholm. Plenty, based in California, will open a new indoor farm near Los Angeles. Vertical farms mostly grow high-value leafy greens and herbs, but some are venturing into tomatoes, peppers and berries. The challenge now is to make the economics stack up, too.

Ships produce 3% of greenhouse-gas emissions. Burning maritime bunker fuel, a dirty diesel sludge, also contributes to acid rain. None of this was a problem in the age of sailwhich is why sails are making a comeback, in high-tech form, to cut costs and emissions.

In 2022 Michelin of France will equip a freighter with an inflatable sail that is expected to reduce fuel consumption by 20%. MOL, a Japanese shipping firm, plans to put a telescoping rigid sail on a ship in August 2022. Naos Design of Italy expects to equip eight ships with its pivoting and foldable hard wing sails. Other approaches include kites, suction wings that house fans, and giant, spinning cylinders called Flettner rotors. By the end of 2022 the number of big cargo ships with sails of some kind will have quadrupled to 40, according to the International Windship Association. If the European Union brings shipping into its carbon-trading scheme in 2022, as planned, that will give these unusual technologies a further push.

Most people do not do enough exercise. Many would like to, but lack motivation. Virtual reality (VR) headsets let people play games and burn calories in the process, as they punch or slice oncoming shapes, or squat and shimmy to dodge obstacles. VR workouts became more popular during the pandemic as lockdowns closed gyms and a powerful, low-cost headset, the Oculus Quest 2, was released. An improved model and new fitness features are coming in 2022. And Supernatural, a highly regarded VR workout app available only in North America, may be released in Europe. Could the killer app for virtual reality be physical fitness?

The impressive success of coronavirus vaccines based on messenger RNA (mRNA) heralds a golden era of vaccine development. Moderna is developing an HIV vaccine based on the same mRNA technology used in its highly effective coronavirus vaccine. It entered early-stage clinical trials in 2021 and preliminary results are expected in 2022. BioNTech, joint-developer of the Pfizer-BioNTech coronavirus vaccine, is working on an mRNA vaccine for malaria, with clinical trials expected to start in 2022. Non-mRNA vaccines for HIV and malaria, developed at the University of Oxford, are also showing promise.

For years, researchers have been developing techniques to create artificial organs using 3D printing of biological materials. The ultimate goal is to take a few cells from a patient and create fully functional organs for transplantation, thus doing away with long waiting-lists, testing for matches and the risk of rejection.

That goal is still some way off for fleshy organs. But bones are less tricky. Two startups, Particle3D and ADAM, hope to have 3D-printed bones available for human implantation in 2022. Both firms use calcium-based minerals to print their bones, which are made to measure based on patients CT scans. Particle3Ds trials in pigs and mice found that bone marrow and blood vessels grew into its implants within eight weeks. ADAM says its 3D-printed implants stimulate natural bone growth and gradually biodegrade, eventually being replaced by the patients bone tissue. If all goes well, researchers say 3D-printed blood vessels and heart valves are next.

Long seen as something of a fantasy, flying taxis, or electric vertical take-off and landing (eVTOL) aircraft, as the fledgling industry calls them, are getting serious. Several firms around the world will step up test flights in 2022 with the aim of getting their aircraft certified for commercial use in the following year or two. Joby Aviation, based in California, plans to build more than a dozen of its five-seater vehicles, which have a 150-mile range. Volocopter of Germany aims to provide an air-taxi service at the 2024 Paris Olympics. Other contenders include eHang, Lilium and Vertical Aerospace. Keep an eye on the skies.

After a stand-out year for space tourism in 2021, as a succession of billionaire-backed efforts shot civilians into the skies, hopes are high for 2022. Sir Richard Bransons Virgin Galactic just beat Jeff Bezoss Blue Origin to the edge of space in July, with both billionaires riding in their own spacecraft on suborbital trips. In September Elon Musks company, SpaceX, sent four passengers on a multi-day orbital cruise around the Earth.

All three firms hope to fly more tourists in 2022, which promises to be the first year in which more people go to space as paying passengers than as government employees. But Virgin Galactic is modifying its vehicle to make it stronger and safer, and it is not expected to fly again until the second half of 2022, with commercial service starting in the fourth quarter. Blue Origin plans more flights but has not said when or how many. For its part, SpaceX has done a deal to send tourists to the International Space Station. Next up? The Moon.

They are taking longer than expected to get off the ground. But new rules, which came into effect in 2021, will help drone deliveries gain altitude in 2022. Manna, an Irish startup which has been delivering books, meals and medicine in County Galway, plans to expand its service in Ireland and into Britain. Wing, a sister company of Google, has been doing test deliveries in America, Australia and Finland and will expand its mall-to-home delivery service, launched in late 2021. Dronamics, a Bulgarian startup, will start using winged drones to shuttle cargo between 39 European airports. The question is: will the pace of drone deliveries pick upor drop off?

For half a century, scientists have wondered whether changes to the shape of a supersonic aircraft could reduce the intensity of its sonic boom. Only recently have computers become powerful enough to run the simulations needed to turn those noise-reduction theories into practice.

In 2022 NASAs X-59 QueSST (short for Quiet Supersonic Technology) will make its first test flight. Crucially, that test will take place over landspecifically, Edwards Air Force Base in California. Concorde, the worlds first and only commercial supersonic airliner, was not allowed to travel faster than sound when flying over land. The X-59s sonic boom is expected to be just one-eighth as loud as Concordes. At 75 perceived decibels, it will be equivalent to a distant thunderstormmore of a sonic thump. If it works, NASA hopes that regulators could lift the ban on supersonic flights over land, ushering in a new era for commercial flight.

Architects often use 3D printing to create scale models of buildings. But the technology can be scaled up and used to build the real thing. Materials are squirted out of a nozzle as a foam that then hardens. Layer by layer, a house is printedeither on site, or as several pieces in a factory that are transported and assembled.

In 2022 Mighty Buildings, based in California, will complete a development of 15 eco-friendly 3D-printed homes at Rancho Mirage. And ICON, based in Texas, plans to start building a community of 100 3D-printed homes near Austin, which would be the largest development of its kind.

Its become a craze in Silicon Valley. Not content with maximising their productivity and performance during their waking hours, geeks are now optimising their sleep, too, using an array of technologies. These include rings and headbands that record and track sleep quality, soothing sound machines, devices to heat and cool mattresses, and smart alarm clocks to wake you at the perfect moment. Google launched a sleep-tracking nightstand tablet in 2021, and Amazon is expected to follow suit in 2022. It sounds crazy. But poor sleep is linked with maladies from heart disease to obesity. And what Silicon Valley does today, everyone else often ends up doing tomorrow.

Diets don't work. Evidence is growing that each persons metabolism is unique, and food choices should be, too. Enter personalised nutrition: apps that tell you what to eat and when, using machine-learning algorithms, tests of your blood and gut microbiome, data on lifestyle factors such as exercise, and real-time tracking of blood-sugar levels using coin-sized devices attached to the skin. After successful launches in America, personalised-nutrition firms are eyeing other markets in 2022. Some will also seek regulatory approval as treatments for conditions such as diabetes and migraine.

Remote medical consultations have become commonplace. That could transform the prospects for wearable health trackers such as the Fitbit or Apple Watch. They are currently used primarily as fitness trackers, measuring steps taken, running and swimming speeds, heart rates during workouts, and so forth. But the line between consumer and medical uses of such devices is now blurring, say analysts at Gartner, a consultancy.

Smart watches can already measure blood oxygenation, perform ECGs and detect atrial fibrillation. The next version of the Apple Watch, expected in 2022, may include new sensors capable of measuring levels of glucose and alcohol in the blood, along with blood pressure and body temperature. Rockley Photonics, the company supplying the sensor technology, calls its system a clinic on the wrist. Regulatory approval for such functions may take a while, but in the meantime doctors, not just users, will be paying more attention to data from wearables.

Coined in 1992 by Neal Stephenson in his novel Snow Crash, the word metaverse referred to a persistent virtual world, accessible via special goggles, where people could meet, flirt, play games, buy and sell things, and much more besides. In 2022 it refers to the fusion of video games, social networking and entertainment to create new, immersive experiences, like swimming inside your favourite song at an online concert. Games such as Minecraft, Roblox and Fortnite are all stepping-stones to an emerging new medium. Facebook has renamed itself Meta to capitalise on the opportunityand distract from its other woes.

An idea that existed only on blackboards in the 1990s has grown into a multi-billion dollar contest between governments, tech giants and startups: harnessing the counter-intuitive properties of quantum physics to build a new kind of computer. For some kinds of mathematics a quantum computer could outperform any non-quantum machine that could ever be built, making quick work of calculations used in cryptography, chemistry and finance.

But when will such machines arrive? One measure of a quantum computers capability is its number of qubits. A Chinese team has built a computer with 66 qubits. IBM, an American firm, hopes to hit 433 qubits in 2022 and 1,000 by 2023. But existing machines have a fatal flaw: the delicate quantum states on which they depend last for just a fraction of a second. Fixing that will take years. But if existing machines can be made useful in the meantime, quantum computing could become a commercial reality much sooner than expected.

Unlike a human influencer, a virtual influencer will never be late to a photoshoot, get drunk at a party or get old. That is because virtual influencers are computer-generated characters who plug products on Instagram, Facebook and TikTok.

The best known is Miquela Sousa, or Lil Miquela, a fictitious Brazilian-American 19-year-old with 3m Instagram followers. With $15bn expected to be spent on influencer marketing in 2022, virtual influencers are proliferating. Aya Stellaran interstellar traveller crafted by Cosmiq Universe, a marketing agencywill land on Earth in February. She has already released a song on YouTube.

In April 2021 the irrepressible entrepreneur Elon Musk excitedly tweeted that a macaque monkey was literally playing a video game telepathically using a brain chip. His company, Neuralink, had implanted two tiny sets of electrodes into the monkeys brain. Signals from these electrodes, transmitted wirelessly and then decoded by a nearby computer, enabled the monkey to move the on-screen paddle in a game of Pong using thought alone.

In 2022 Neuralink hopes to test its device in humans, to enable people who are paralysed to operate a computer. Another firm, Synchron, has already received approval from American regulators to begin human trials of a similar device. Its minimally invasive neural prosthetic is inserted into the brain via blood vessels in the neck. As well as helping paralysed people, Synchron is also looking at other uses, such as diagnosing and treating nervous-system conditions including epilepsy, depression and hypertension.

Winston Churchill once mused about the absurdity of growing a whole chicken to eat the breast or wing. Nearly a century later, around 70 companies are cultivating meats in bioreactors. Cells taken from animals, without harming them, are nourished in soups rich in proteins, sugars, fats, vitamins and minerals. In 2020 Eat Just, an artificial-meat startup based in San Francisco, became the first company certified to sell its products, in Singapore.

It is expected to be joined by a handful of other firms in 2022. In the coming year an Israeli startup, SuperMeat, expects to win approval for commercial sales of cultivated chicken burgers, grown for $10 a popdown from $2,500 in 2018, the company says. Finless Foods, based in California, hopes for approval to sell cultivated bluefin tuna, grown for $440 a kilogramdown from $660,000 in 2017. Bacon, turkey and other cultivated meats are in the pipeline. Eco-conscious meat-lovers will soon be able to have their steakand eat it.

By the Science and technology correspondents of The Economist

This article appeared in the What next? section of the print edition of The World Ahead 2022 under the headline What next?

Read the original here:
What next? 22 emerging technologies to watch in 2022 - The Economist

Quantum computing pioneer Umesh Vazirani to give Cruickshank Lecture as part of three-day conference – EurekAlert

KINGSTON, R.I. Oct. 12, 2021 University of California, Berkeley Professor Umesh Vazirani, a pioneer in quantum computing algorithms and complexity theory, will deliver the annual University of Rhode Island Cruickshank Lecture on Monday, Oct. 18, in conjunction with the three-day Frontiers in Quantum Computing conference.

Frontiers in Quantum Computing, which celebrates the launch this semester of URIs new masters degree in quantum computing, will take place Oct. 18-20 on the Kingston Campus. More than 30 experts in the fields of quantum computing and quantum information science will deliver daily talks on such topics as the future of quantum computing, research and industry developments, and educational initiatives for the next generation of experts in the field.

This will be an impressive gathering, said Vanita Srinivasa, director of URIs Quantum Information Science program and a conference organizer. These scientists have made seminal contributions to quantum computing and quantum information science. We have speakers who are well-established in quantum information science, even before it was a major field, and we have speakers who are up and coming and are now among the top researchers in their fields.

Vazirani, the Roger A. Strauch Professor of Electrical Engineering and Computer Science at UC Berkeley and director of the Berkeley Quantum Computation Center, is considered one of the founders of the field of quantum computing. His talk will explore quantum computings impact on the foundations of quantum mechanics and the philosophy of science.

There are several different theories about how quantum mechanics can be interpreted. Advances in quantum computing will change our understanding of the foundations of quantum mechanics and maybe our overall view of the universe, said Leonard Kahn, chair of the URIDepartment of Physicswho helped organize the conference.

Vaziranis virtual talk, A Quantum Wave in Computing, will be presented to an in-person audience in room 100 of the Beaupre Center for Chemical and Forensic Sciences, 140 Flagg Road, on the Kingston campus, at 6:30 p.m. on Oct. 18. The lecture can also be viewed live with a link from the conferenceswebsite.

The conferences list of speakers includes U.S. Sen. Jack Reed, who will deliver an address at 9:45 am. on the opening day of the conference, along with experts from around the U.S. as well as Australia, Canada, Netherlands, and Denmark.

Jacob Taylor, a physicist at the National Institute of Standards and Technology, Joint Quantum Institute Fellow, and founder of the national effort overseeing implementation of the National Quantum Initiative Act, will deliver the conferences opening keynote address on Monday, Oct. 18, at 8 a.m. in the Ballroom of the Memorial Union.

Charles Tahan, assistant director for Quantum Information Science and director of the National Quantum Coordination Office in the White House Office of Science and Technology Policy (OTSP), will give the keynote address before the roundtable discussion on the future of quantum computing on Tuesday, Oct. 19, at 5:15 p.m. in the ballroom, which is sponsored by D-Wave.

The panel will include Taylor, the first assistant director for Quantum Information Science at the OSTP; Michelle Simmons, a pioneer in atomic electronics and silicon-based quantum computing and director of the Australian Research Councils Centre of Excellence for Quantum Computation and Communication Technology; Catherine McGeoch, Senior Scientist with D-Wave; and Christopher Lirakis, IBM Quantum Lead For Quantum Systems Deployment.

The panelists will provide their perspectives on the future of quantum computing from industry, government and academia, said Srinivasa. The future is uncertain, but hopeful, and there are exciting challenges along the way. Quantum computing technology has progressed from something thats been a dream to something that can actually be built.

Quantum computers have the promise of solving key problems that would take a prohibitively long time to execute on classical computers. Because of the nature of the quantum bit, as compared to the classical bit, some of those intractable calculations can be done on a quantum computer in minutes rather than thousands of years. The impact on many problems from molecular simulations to encryption of credit card data will have far-reaching consequences.

I dont think theres been a time when theres been this much publicity and press about quantum computing, said Kahn. Theres clearly a path forward but there are a lot of hurdles along the way.

With the conference celebrating URIs masters in quantum computing, education will be an important topic. Daily speakers will explore education initiatives, including developing curriculum at all levels to make the field more accessible to students. Presentations will include Chandralekha Singh, president of the American Association of Physics Teachers; Charles Robinson, IBM Quantum Computing Public Sector leader; and Robert Joynt, of the University of Wisconsin-Madison.

Other topics include implementation of quantum computing and industry developments, including talks by Christopher Savoie 92, founder and chief executive officer of Zapata Computing and a conference organizer, and Andrew King, director of Performance Research at D-Wave.

Its going to be amazing science that will be talked about at the conference, said Srinivasa, whose research focuses on quantum information processing theory for semiconductor systems. Christopher Savoie has commented that this conference is equivalent to any of the major conferences on quantum computing that hes been to.

###

Frontiers in Quantum Computing is free and open to the public. Except for the Cruickshank Lecture, all events will be held in the Memorial Union Ballroom, 50 Lower College Road, on the Kingston Campus. While events are in-person, some speakers will take part virtually. All sessions can also be viewed online. For more information or to take part, go to the conferenceswebsite.

The conference is sponsored by Zapata Computing, D-Wave, IBM Quantum, PSSC Labs, and Microway, along with URIs College of Arts and Sciences, University Libraries, Information Technology Services, the Office of the Provost, and the Department of Physics.

The Alexander M. Cruickshank Endowed Lectureship was established in 1999. It is named for Alexander M. Cruickshank, who served on the URI chemistry faculty for 30 years and was subsequently the director of the Gordon Research Conferences until his retirement in 1993. The lecture series is sponsored by the URI Department of Physics, the Gordon Research Center and URIs College of Arts and Sciences.

For more information, contact Leonard Kahn atlenkahn@uri.edu.

Visit link:
Quantum computing pioneer Umesh Vazirani to give Cruickshank Lecture as part of three-day conference - EurekAlert

IONQ Stock: Why It Increased Today – Pulse 2.0

The stock price of IonQ Inc (NYSE: IONQ) increased by over 3.6% during intraday trading today. Investors are responding positively to researchers from The University of Maryland and IonQ (a leader in trapped-ion quantum computing) publishing results in the journal Nature that show a significant breakthrough in error correction technology for quantum computers.

In collaboration with scientists from Duke University and the Georgia Institute of Technology, this work demonstrated for the first time how quantum computers can overcome quantum computing errors, a key technical obstacle to large-scale use cases like financial market prediction or drug discovery.

Currently, quantum computers suffer from errors when qubits encounter environmental interference. And quantum error correction works by combining multiple qubits together to form a logical qubit that more securely stores quantum information.

But storing information by itself is not enough. Quantum algorithms also need to access and manipulate the information. And to interact with information in a logical qubit without creating more errors, the logical qubit needs to be fault-tolerant.

The study (completed at the University of Maryland, peer-reviewed, and published in the journalNature) demonstrates how trapped ion systems like IonQs can soon deploy fault-tolerant logical qubits to overcome the problem of error correction at scale. And by successfully creating the first fault-tolerant logical qubit a qubit that is resilient to a failure in any one component the team has laid the foundation for quantum computers that are both reliable and large enough for practical uses such as risk modeling or shipping route optimization.

The team had demonstrated that this could be achieved with minimal overhead, requiring only nine physical qubits to encode one logical qubit. And this will allow IonQ to apply error correction only when needed, in the amount needed, while minimizing qubit cost.

Behind the study are recently graduated UMD PhD students and current IonQ quantum engineers Laird Egan and Daiwei Zhu, IonQ cofounder Chris Monroe as well as IonQ technical advisor and Duke Professor Ken Brown. And coauthors of the paper include: UMD and Joint Quantum Institute (JQI) research scientist Marko Cetina; postdoctoral researcher Crystal Noel; graduate students Andrew Risinger and Debopriyo Biswas; Duke University graduate student Dripto M. Debroy and postdoctoral researcher Michael Newman; and Georgia Institute of Technology graduate student Muyuan Li.

This news follows on the heels of other significant technological developments from IonQ. And the company recently demonstrated the industrys first Reconfigurable Multicore Quantum Architecture (RMQA) technology, which can dynamically configure 4 chains of 16 ions into quantum computing cores.

And the company also recently debuted patent-pending evaporated glass traps: technology that lays the foundation for continual improvements to IonQs hardware and supports a significant increase in the number of ions that can be trapped in IonQs quantum computers. It recently became the first quantum computer company whose systems are available for use via all major cloud providers. IonQ also recently became the first publicly-traded, pure-play quantum computing company.

KEY QUOTES:

This is about significantly reducing the overhead in computational power that is typically required for error correction in quantum computers. If a computer spends all its time and power correcting errors, thats not a useful computer. What this paper shows is how the trapped ion approach used in IonQ systems can leapfrog others to fault tolerance by taking small, unreliable parts and turning them into a very reliable device. Competitors are likely to need orders of magnitude more qubits to achieve similar error correction results.

Peter Chapman, President and CEO of IonQ

Disclaimer: This content is intended for informational purposes. Before making any investment, you should do your own analysis.

Follow this link:
IONQ Stock: Why It Increased Today - Pulse 2.0

IonQ and University of Maryland Researchers Demonstrate Fault-Tolerant Error Correction, Critical for Unlocking the Full Potential of Quantum…

COLLEGE PARK, Md.--(BUSINESS WIRE)--Researchers from The University of Maryland and IonQ, Inc. (IonQ) (NYSE: IONQ), a leader in trapped-ion quantum computing, on Monday published results in the journal Nature that show a significant breakthrough in error correction technology for quantum computers. In collaboration with scientists from Duke University and the Georgia Institute of Technology, this work demonstrates for the first time how quantum computers can overcome quantum computing errors, a key technical obstacle to large-scale use cases like financial market prediction or drug discovery.

Quantum computers suffer from errors when qubits encounter environmental interference. Quantum error correction works by combining multiple qubits together to form a logical qubit that more securely stores quantum information. But storing information by itself is not enough; quantum algorithms also need to access and manipulate the information. To interact with information in a logical qubit without creating more errors, the logical qubit needs to be fault-tolerant.

The study, completed at the University of Maryland, peer-reviewed, and published in the journal Nature, demonstrates how trapped ion systems like IonQs can soon deploy fault-tolerant logical qubits to overcome the problem of error correction at scale. By successfully creating the first fault-tolerant logical qubit a qubit that is resilient to a failure in any one component the team has laid the foundation for quantum computers that are both reliable and large enough for practical uses such as risk modeling or shipping route optimization. The team demonstrated that this could be achieved with minimal overhead, requiring only nine physical qubits to encode one logical qubit. This will allow IonQ to apply error correction only when needed, in the amount needed, while minimizing qubit cost.

This is about significantly reducing the overhead in computational power that is typically required for error correction in quantum computers," said Peter Chapman, President and CEO of IonQ. "If a computer spends all its time and power correcting errors, that's not a useful computer. What this paper shows is how the trapped ion approach used in IonQ systems can leapfrog others to fault tolerance by taking small, unreliable parts and turning them into a very reliable device. Competitors are likely to need orders of magnitude more qubits to achieve similar error correction results.

Behind todays study are recently graduated UMD PhD students and current IonQ quantum engineers, Laird Egan and Daiwei Zhu, IonQ cofounder Chris Monroe as well as IonQ technical advisor and Duke Professor Ken Brown. Coauthors of the paper include: UMD and Joint Quantum Institute (JQI) research scientist Marko Cetina; postdoctoral researcher Crystal Noel; graduate students Andrew Risinger and Debopriyo Biswas; Duke University graduate student Dripto M. Debroy and postdoctoral researcher Michael Newman; and Georgia Institute of Technology graduate student Muyuan Li.

The news follows on the heels of other significant technological developments from IonQ. The company recently demonstrated the industrys first Reconfigurable Multicore Quantum Architecture (RMQA) technology, which can dynamically configure 4 chains of 16 ions into quantum computing cores. The company also recently debuted patent-pending evaporated glass traps: technology that lays the foundation for continual improvements to IonQs hardware and supports a significant increase in the number of ions that can be trapped in IonQs quantum computers. Furthermore, it recently became the first quantum computer company whose systems are available for use via all major cloud providers. Last week, IonQ also became the first publicly-traded, pure-play quantum computing company.

About IonQ

IonQ, Inc. is a leader in quantum computing, with a proven track record of innovation and deployment. IonQs next-generation quantum computer is the worlds most powerful trapped-ion quantum computer, and IonQ has defined what it believes is the best path forward to scale. IonQ is the only company with its quantum systems available through the cloud on Amazon Braket, Microsoft Azure, and Google Cloud, as well as through direct API access. IonQ was founded in 2015 by Christopher Monroe and Jungsang Kim based on 25 years of pioneering research. To learn more, visit http://www.ionq.com.

About the University of Maryland

The University of Maryland, College Park is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 40,000 students,10,000 faculty and staff, and 297 academic programs. As one of the nations top producers of Fulbright scholars, its faculty includes two Nobel laureates, three Pulitzer Prize winners and 58 members of the national academies. The institution has a $2.2 billion operating budget and secures more than $1 billion annually in research funding together with the University of Maryland, Baltimore. For more information about the University of Maryland, College Park, visit http://www.umd.edu.

Forward-Looking Statements

This press release contains certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Some of the forward-looking statements can be identified by the use of forward-looking words. Statements that are not historical in nature, including the words anticipate, expect, suggests, plan, believe, intend, estimates, targets, projects, should, could, would, may, will, forecast and other similar expressions are intended to identify forward-looking statements. These statements include those related to the Companys ability to further develop and advance its quantum computers and achieve scale; and the ability of competitors to achieve similar error correction results. Forward-looking statements are predictions, projections and other statements about future events that are based on current expectations and assumptions and, as a result, are subject to risks and uncertainties. Many factors could cause actual future events to differ materially from the forward-looking statements in this press release, including but not limited to: market adoption of quantum computing solutions and the Companys products, services and solutions; the ability of the Company to protect its intellectual property; changes in the competitive industries in which the Company operates; changes in laws and regulations affecting the Companys business; the Companys ability to implement its business plans, forecasts and other expectations, and identify and realize additional partnerships and opportunities; and the risk of downturns in the market and the technology industry including, but not limited to, as a result of the COVID-19 pandemic. The foregoing list of factors is not exhaustive. You should carefully consider the foregoing factors and the other risks and uncertainties described in the Risk Factors section of the registration statement on Form S-4 and other documents filed by the Company from time to time with the Securities and Exchange Commission. These filings identify and address other important risks and uncertainties that could cause actual events and results to differ materially from those contained in the forward-looking statements. Forward-looking statements speak only as of the date they are made. Readers are cautioned not to put undue reliance on forward-looking statements, and the Company assumes no obligation and do not intend to update or revise these forward-looking statements, whether as a result of new information, future events, or otherwise. The Company does not give any assurance that it will achieve its expectations.

Go here to read the rest:
IonQ and University of Maryland Researchers Demonstrate Fault-Tolerant Error Correction, Critical for Unlocking the Full Potential of Quantum...