Archive for the ‘Quantum Computer’ Category

Researchers Around the World Are Buzzing About a Candidate Superconductor Created at Quantum Foundry – SciTechDaily

Photo Credit: UCSB

Since receiving a $25 million grant in 2019 to become the first National Science Foundation (NSF) Quantum Foundry, UC Santa Barbara researchers affiliated with the foundry have been working to develop materials that can enable quantum informationbased technologies for such applications as quantum computing, communications, sensing, and simulation.

They may have done it.

In a new paper, published in the journal Nature Materials, foundry co-director and UCSB materials professor Stephen Wilson, and multiple co-authors, including key collaborators at Princeton University, study a new material developed in the Quantum Foundry as a candidate superconductor a material in which electrical resistance disappears and magnetic fields are expelled that could be useful in future quantum computation.

A previous paper published by Wilsons group in the journal Physical Review Letters and featured in Physics magazine described a new material, cesium vanadium antimonide (CsV3Sb5), that exhibits a surprising mixture of characteristics involving a self-organized patterning of charge intertwined with a superconducting state. The discovery was made by Elings Postdoctoral Fellow Brenden R. Ortiz. As it turns out, Wilson said, those characteristics are shared by a number of related materials, including RbV3Sb5 and KV3Sb5, the latter (a mixture of potassium, vanadium and antimony) being the subject of this most recent paper, titled Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5.

Stephen Wilson. Credit: Spencer Bruttig

Materials in this group of compounds, Wilson noted, are predicted to host interesting charge density wave physics [that is, their electrons self-organize into a non-uniform pattern across the metal sites in the compound]. The peculiar nature of this self-organized patterning of electrons is the focus of the current work.

This predicted charge density wave state and other exotic physics stem from the network of vanadium (V) ions inside these materials, which form a corner-sharing network of triangles known as a kagome lattice. KV3Sb5 was discovered to be a rare metal built from kagome lattice planes, one that also superconducts. Some of the materials other characteristics led researchers to speculate that charges in it may form tiny loops of current that create local magnetic fields.

Materials scientists and physicists have long predicted that a material could be made that would exhibit a type of charge density wave order that breaks what is called time reversal symmetry. That means that it has a magnetic moment, or a field, associated with it, Wilson said. You can imagine that there are certain patterns on the kagome lattice where the charge is moving around in a little loop. That loop is like a current loop, and it will give you a magnetic field. Such a state would be a new electronic state of matter and would have important consequences for the underlying unconventional superconductivity.

The role of Wilsons group was to make the material and characterize its bulk properties. The Princeton team then used high-resolution scanning tunnelling microscopy (STM) to identify what they believe are the signatures of such a state, which, Wilson said are also hypothesized to exist in other anomalous superconductors, such as those that superconduct at high temperature, though it has not been definitively shown.

STM works byscanninga very sharp metal wire tip over a surface. By bringing the tip extremely close to the surface and applying an electrical voltage to the tip or to the sample, the surface can be imaged down to the scale of resolving individual atoms and where the electrons group. In the paper the researchers describe seeing and analyzing a pattern of order in the electronic charge, which changes as a magnetic field is applied. This coupling to an external magnetic field suggests a charge density wave state that creates its own magnetic field.

This is exactly the kind of work for which the Quantum Foundry was established. The foundrys contribution is important, Wilson said. It has played a leading role in developing these materials, and foundry researchers discovered superconductivity in them and then found signatures indicating that they may possess a charge density wave. Now, the materials are being studied worldwide, because they have various aspects that are of interest to many different communities.

They are of interest, for instance, to people in quantum information as potential topological superconductors, he continued. They are of interest to people who study new physics in topological metals, because they potentially host interesting correlation effects, defined as the electrons interacting with one another, and that is potentially what provides the genesis of this charge density wave state. And theyre of interest to people who are pursuing high-temperature superconductivity, because they have elements that seem to link them to some of the features seen in those materials, even though KV3Sb5 superconducts at a fairly low temperature.

If KV3Sb5 turns out to be what it is suspected of being, it could be used to make a topological qubit useful in quantum information applications. For instance, Wilson said, In making a topological computer, one wants to make qubits whose performance is enhanced by the symmetries in the material, meaning that they dont tend to decohere [decoherence of fleeting entangled quantum states being a major obstacle in quantum computing] and therefore have a diminished need for conventional error correction.

There are only certain kinds of states you can find that can serve as a topological qubit, and a topological superconductor is expected to host one, he added. Such materials are rare. This system may be of interest for that, but its far from confirmed, and its hard to confirm whether it is or not. There is a lot left to be done in understanding this new class of superconductors.

Reference: Unconventional chiral charge order in kagome superconductor KV3Sb5 by Yu-Xiao Jiang, Jia-Xin Yin, M. Michael Denner, Nana Shumiya, Brenden R. Ortiz, Gang Xu, Zurab Guguchia, Junyi He, Md Shafayat Hossain, Xiaoxiong Liu, Jacob Ruff, Linus Kautzsch, Songtian S. Zhang, Guoqing Chang, Ilya Belopolski, Qi Zhang, Tyler A. Cochran, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Ziqiang Wang, Ronny Thomale, Titus Neupert, Stephen D. Wilson and M. Zahid Hasan, 10 June 2021, Nature Materials.DOI: 10.1038/s41563-021-01034-y

More:
Researchers Around the World Are Buzzing About a Candidate Superconductor Created at Quantum Foundry - SciTechDaily

Quantum Computing Market is anticipated to surge at a CAGR of 33.7% over the next ten years – PRNewswire

NEW YORK, July 19, 2021 /PRNewswire/ --As per the findings of a revised market research by Persistence Market Research, the worldwide quantum computing market insight reached a valuation of around US$ 5.6 Bn in 2020, and is anticipated to surge at a CAGR of 33.7% over the next ten years.

Major companies are developing quantum computers focused on delivering free access to their quantum systems through cloud platforms, with the objective of creating awareness and a community for developers working on quantum computing technology. Through this new way of offering access, companies are targeting universities, research groups, and organizations focused on quantum computing to practice, test, and develop applications of quantum computing.

Key Takeaways from Market Study

Request for sample PDF of report: https://www.persistencemarketresearch.com/samples/14758

"Growing trend of cost-effective cloud quantum computing along with technological advancements and rising governmental investments to develop quantum computing solutions for commercial applications to propel market growth," says a Persistence Market Research analyst.

Pharmaceutical Industry Preclinical Drug Discovery and Development of Personalized Medicine

Quantum computers are computational devices that use dynamics of atomic-scale objects to manipulate and store information. Current methods in drug synthesis involve significant approximations on the molecular and atomic level. Material science and pharmaceutical vendors use a variety of computational exhaustive methods to evaluation molecule matches and expect positive effects of potential therapeutic approaches.

Ask an expert for any other query: https://www.persistencemarketresearch.com/ask-an-expert/14758

Accurate predictions often require lengthy simulation processes with the current binary computing system, and it takes years and cost millions of dollars to achieve the desired result. There is an opportunity for quantum computing to replace exiting binary systems in drug discovery processes, as quantum computers can analyze large-scale molecules in less time. Also, high computational power of quantum computers opens up the possibility for developing personalized medicines based on individual unique genetic makeup.

COVID-19 Impact Analysis

The COVID-19 epidemic outbreak has disrupted different industries, including the quantum computing space. Demand for quantum computing software, machine learning, cloud-based quantum computing, artificial intelligence (AI), and quantum computer-as-a-services has been increasing during lockdowns. This is fueling demand for quantum computing software and services.

During the outbreak, manufacturing as well as design and development of quantum computing devices declined by nearly 5%-7% in Q3-Q4 2020, due to falling production across East Asian and North America factories, as both regions are the world's major quantum computing device manufacturers and suppliers. However, according to report, production has become pretty stable in the first half of 2021 with demand gaining traction again.

Large quantum-computing enterprises in North America, Europe, Canada, China, Australia, India, and Russia are investing in qubit research, while also giving researchers access to cloud-based and commercial cloud services. Over, the market for quantum computing is projected to grow faster from Q3-Q4 2021 onwards.

Get full access of report: https://www.persistencemarketresearch.com/checkout/14758

Find More Valuable Insights

Persistence Market Research puts forward an unbiased analysis of the global market for quantum computing market, providing historical demand data (2016-2020) and forecast statistics for the period 2021-2031.

To understand the opportunities in the market, it has been segmented on the basis of component (quantum computing devices, quantum computing software, and services (consulting services, implementation services, and support & maintenance), application (simulation & testing, financial modeling, artificial intelligence & machine learning, cybersecurity & cryptography, and others) and industry (healthcare & life sciences, banking & financial services, manufacturing, academics & research, aerospace & defense, energy & utilities, it & telecom and others) across major regions of the world (North America, Latin America, Europe, East Asia, South Asia & Pacific, and MEA).

Related Reports:

About Persistence Market Research:

Persistence Market Research (PMR), as a 3rd-party research organization, does operate through an exclusive amalgamation of market research and data analytics for helping businesses ride high, irrespective of the turbulence faced on the account of financial/natural crunches.

Overview:

Persistence Market Research is always way ahead of its time. In other words, it tables market solutions by stepping into the companies'/clients' shoes much before they themselves have a sneak pick into the market. The pro-active approach followed by experts at Persistence Market Research helps companies/clients lay their hands on techno-commercial insights beforehand, so that the subsequent course of action could be simplified on their part.

Contact

Rajendra Singh Persistence Market Research U.S. Sales Office:305 Broadway, 7th FloorNew York City, NY 10007+1-646-568-7751United StatesUSA - Canada Toll-Free: 800-961-0353Email: [emailprotected]Visit Our Website:https://www.persistencemarketresearch.com

Logo : https://mma.prnewswire.com/media/661339/Persistence_Market_Research_Logo.jpg

SOURCE Persistence Market Research Pvt. Ltd.

Go here to see the original:
Quantum Computing Market is anticipated to surge at a CAGR of 33.7% over the next ten years - PRNewswire

Quantum Computing for the Future Grid – Transmission & Distribution World

The electric power grid is undergoing unprecedented change. This change is due to decarbonization efforts, increased reliance on renewable and variable generation resources, the integration of distributed energy resources, and transportation electrification. In turn, these changes have required electric utilities to expand their monitoring and measurement efforts through metering infrastructure and distribution automation initiatives. All these efforts have resulted in the collection of mountains of data from the electric grid. While this significant increase in data collection enables better monitoring of the grid and enhanced decision making, we still need a robust computational foundation that can convert all this collected big data into actionable information.

As mathematical challenges increase and data becomes core to modern utility decision-making, our industry needs to make progress and draw from emerging analytics and computing technologies. Quantum computing is a ground-breaking information processing technology that can support efforts to address power system challenges and enable the grid of the future. Given the promising applications to the power grid, this is an area of research that has really caught my attention lately. While quantum computing applications to the power grid have remained mostly unexamined, forward-looking utilities are exploring the next step to enhance these analytics by understanding how emerging quantum computing technologies can be leveraged to provide higher service levels.

Building the future grid will require an overall view of the quantum computing technology applications in power systems, such as the dynamic interaction of the transmission and distribution systems. According to a recent IEEE article by Rozhin Eskandarpour and a team of researchers from the University of Denver Electrical and Computing Engineering Department, current computational technologies might not be able to adequately address the needs of the future grid.

The most notable change is observed in the role of the distribution grid and customers in system design and management. Transmission and distribution systems were frequently operated as distinct systems but are becoming more of an integrated system. The underlying hypothesis was that at the substation, the transmission system would supply a prescribed voltage, and the distribution system will supply the energy to individual customers. However, as various types of distributed energy resources, including generation, storage, electric vehicles, and demand response, are integrated into the distribution network, there may be distinct interactions between the transmission and distribution systems. Distributed generations transient and small-signal stability problems are one instance that changes the energy systems dynamic nature. Therefore, developing more comprehensive models that include the dynamic relationships between transmission and distribution systems, and relevant computational tools that can solve such models will be essential in the future. Furthermore, better scheduling models are needed to design viable deployment and use of distributed energy resources.

Eskandarpour et al. describe other potential quantum computing applications for the power grid, including optimization, planning, and logistics; forecasting; weather prediction; wind turbine design; cybersecurity; grid security; and grid stability.

Given that I am both professionally embedded in covering the newest innovations within the power sector and nearing the end of a Ph.D. program at the University of Denver, it is not particularly surprising that a new university-industry research consortium has caught my attention. I am excited to share about this ground-breaking initiative and its potential role in building the future grid.

The University of Denver, in collaboration with various utilities, has established a consortium related to envisioning the quantum upgraded electric system of tomorrow. QUEST is the clever acronym that has been adopted for this university-industry consortium. The consortium aims to enhance university-industry collaborations to solve emerging challenges in building the future grid by utilizing quantum information and quantum computation. The consortium will develop new quantum models, methodologies, and algorithms to solve a range of grid problems faster and more accurately. Topics of interest include:

Industry members financially support the QUEST consortium, and membership is voluntary and open to any public or private organization active in the power and energy industry. For more information, contact Dr. Amin Khodaei at the University of Denver, School of Engineering and Computer Science.

Link:
Quantum Computing for the Future Grid - Transmission & Distribution World

Researchers develop innovative platform capable of verifying quantum encryption technologies – Aju Business Daily

[Courtesy of the Electronics and Telecommunications Research Institute]

The Electronics and Telecommunications Research Institute (ETRI) said that the new platform called "Q Crypton," unveiled at an online conference on July 21, can verify the quantum safety of various cryptographic systems such as RSA, which is a public-key cryptosystem that is widely used for securing data transmission, and next-generation quantum-resistant passwords.

Q Crypton laid the foundation for verifying cryptographic algorithms and the performance of programs that will be used in quantum computers, ETRI said, adding the platform would be released step by step through a web browser to prevent hacking using quantum computers.

"The fear of incapacitating modern public key cryptography with quantum computers is coming to reality. Based on the world's best technology in cryptographic quantum safety, we will work hard to establish next-generation security infrastructure early," ETRI's cybersecurity research division head Kim Ik-kyun said in a statement on July 21.

Quantum cryptography is an essential security solution for safeguarding critical information. Data encoded in a quantum state is virtually unhackable without quantum keys which are basically random number tables used to decipher encrypted information. Binary digital electronic computers are based on transistors and capacitors with data encoded into binary digits (bits). Quantum computation uses quantum bits or qubits.

Q Crypton platform can analyze and simulate the quantitative safety of passwords more accurately as it can consider various factors such as different qubit sizes, quantum computer chip structures, and an error rate. Because the platform is equipped with visualization programming technology and a library of key computations for encryption, it is possible to develop quantum algorithms needed for encryption quickly and efficiently.

ETRI said the platform schematized quantum circuits so that numerous and complex formulas can be seen intuitively at a glance and shortened so that they are not inputted one by one. the platform provides the language processing of quantum algorithms, verification using virtual machines, and a function to analyze the amount of quantum resources.

Post-quantum cryptography (PQC) refers to cryptographic algorithms that are thought to be secure against an attack by a quantum computer. Even though current, publicly known, experimental quantum computers lack the processing power to break any real cryptographic algorithm, many cryptographers are designing new algorithms to prepare for a time when quantum computing becomes a threat.

Read more:
Researchers develop innovative platform capable of verifying quantum encryption technologies - Aju Business Daily

Red Hat embraces quantum supremacy as it looks to the future – SiliconANGLE News

Since its founding in 1993, Red Hat Inc. has seen significant growth and witnessed first hand the transformation from an analog to a digital economy.

With years of experience under its belt, Red Hat is looking on the horizon to prepare for emerging technology with its partnership with IBM Corp., giving it a front-row seat to technological progress. The software company employs a variety of experts across different departments to maintain the massive overhead of running a large tech business.

We typically organize our teams around horizontal technology sectors, said Stephen Watt (pictured, right), distinguished engineer and head of emerging technologies at Red Hat. I have an edge team, cloud networking team, a cloud storage team, application platforms team. Weve got different areas that we attack work and opportunities, but the good ideas can come from a variety of different places, so we try and leverage co-creation with our customers and our partners.

Watt, along with Parul Singh (pictured, left), senior software engineer at Red Hat, and Luke Hinds (pictured, middle), senior software engineer at Red Hat, spoke with John Furrier, host of theCUBE, SiliconANGLE Medias livestreaming studio, during the recentRed Hat Summit. They discussed quantum supremacy, how Red Hat manages its consumers needs, signature server and more.(* Disclosure below.)

One of the many new technologies emerging is quantum computing, which uses qubits instead of bits and is able to process an exponential amount of data compared to its older counterpart.

Quantum computers are evolving, and they have been around, but right now you see that they are going to be the next thing, Singh said. We define quantum supremacy as, say you have any program that you run or any problem that you solve on a classical computer, a quantum computer would be giving you the results faster.

Because quantum computers are not as easily accessible as classical computers, Red Hat has sought out a solution that combines OpenShifts classical components with quantum computing, taking the results and integrating them into classical workloads.

Signature server, or sigstore, is an umbrella organization containing various open-source projects.

Sigstore will enable developers to sign software artifacts, bills and materials, containers, binaries, all of these different artifacts that are part of a software supply chain, Hinds said. Its very similar to a blockchain. It allows you to have cryptographic-proof auditing of our software supply chain, and weve made sigstore so that its easy to adopt, because traditional cryptographic signing tools are a challenge for a lot of developers to implement in their open-source projects.

Open-source boasts the advantage of being transparent, allowing everyone to see the code with no hidden surprises or security issues lurking underneath. Another advantage of open-source software is agency, according to Watt.

If youre waiting on a vendor to go do something, if its proprietary software, you dont have much agency to get that vendor to go do that thing. Whereas the open source, if youre tired of waiting around, you can just submit the patch, he said. So people can then go and take sigstore, run it as a smaller internal service. Maybe they discover a bug. They can fix that bug, contribute it back to the operationalizing piece, as well as the traditional package software, to make it a much more robust and open service. So you bring that transparency and the agency back to the software-as-a-service model as well.

Watch the complete video interview below, and be sure to check out more of SiliconANGLEs and theCUBEs coverage of Red Hat Summit. (* Disclosure: TheCUBE is a paid media partner for Red Hat Summit. Neither Red Hat Inc., the sponsor for theCUBEs event coverage, nor other sponsors have editorial control over content on theCUBE or SiliconANGLE.)

We are holding our second cloud startup showcase on June 16.Click here to join the free and open Startup Showcase event.

TheCUBEis part of re:Invent, you know,you guys really are a part of the eventand we really appreciate your coming hereand I know people appreciate thecontent you create as well Andy Jassy

We really want to hear from you. Thanks for taking the time to read this post. Looking forward to seeing you at the event and in theCUBE Club.

Link:
Red Hat embraces quantum supremacy as it looks to the future - SiliconANGLE News