Archive for the ‘Quantum Computer’ Category

Scientists are using quantum computing to help them discover signs of life on other planets – ZDNet

Scientists will use quantum computing tools to eventually help them detect molecules in outer space that could be precursors to life.

Quantum computers are assisting researchers in scouting the universe in search of life outside of our planet -- and although it's far from certain they'll find actual aliens, the outcomes of the experiment could be almost as exciting.

Zapata Computing, which provides quantum software services, has announced a new partnership with the UK's University of Hull, which will see scientists use quantum computing tools to eventually help them detect molecules in outer space that could be precursors to life.

During the eight-week program, quantum resources will be combined with classical computing tools to resolve complex calculations with better accuracy, with the end goal of finding out whether quantum computing could provide a useful boost to the work of astrophysicists, despite the technology's current limitations.

See also: There are two types of quantum computing. Now one company says it wants to offer both.

Detecting life in space is as tricky a task as it sounds. It all comes down to finding evidence of molecules that have the potential to create and sustain life -- and because scientists don't have the means to go out and observe the molecules for themselves, they have to rely on alternative methods.

Typically, astrophysicists pay attention to light, which can be analyzed through telescopes. This is because light -- for example, infrared radiation generated by nearby stars -- often interacts with molecules in outer space. And when it does, the particles vibrate, rotate, and absorb some of the light, leaving a specific signature on the spectral data that can be picked up by scientists back on Earth.

Therefore, for researchers, all that is left to do is detect those signatures and trace back to which molecules they correspond.

The problem? MIT researchershave previously established that over 14,000 moleculescould indicate signs of life in exoplanets' atmospheres. In other words, there is still a long way to go before astrophysicists have drawn a database of all the different ways that those molecules might interact with light -- of all the signatures that they should be looking for when pointing their telescopes to other planets.

That's the challenge that the University of Hull has set for itself: the institution's Centre for Astrophysics is effectively hoping to generate a database of detectable biological signatures.

For over two decades, explains David Benoit, senior lecturer in molecular physics and astrochemistry at the University of Hull, researchers have been using classical means to try and predict those signatures. Still, the method is rapidly running out of steam.

The calculations carried out by the researchers at the center in Hull involve describing exactly how electrons interact with each other within a molecule of interest -- think hydrogen, oxygen, nitrogen and so on. "On classical computers, we can describe the interactions, but the problem is this is a factorial algorithm, meaning that the more electrons you have, the faster your problem is going to grow," Benoit tells ZDNet.

"We can do it with two hydrogen atoms, for example, but by the time you have something much bigger, like CO2, you're starting to lose your nerve a little bit because you're using a supercomputer, and even they don't have enough memory or computing power to do that exactly."

Simulating these interactions with classical means, therefore, ultimately comes at the cost of accuracy. But as Benoit says, you don't want to be the one claiming to have detected life on an exo-planet when it was actually something else.

Unlike classical computers, however, quantum systems are built on the principles of quantum mechanics -- those that govern the behavior of particles when they are taken at their smallest scale: the same principles as those that underlie the behavior of electrons and atoms in a molecule.

This prompted Benoit to approach Zapata with a "crazy idea": to use quantum computers to solve the quantum problem of life in space.

"The system is quantum, so instead of taking a classical computer that has to simulate all of the quantum things, you can take a quantum thing and measure it instead to try and extract the quantum data we want," explains Benoit.

Quantum computers, by nature, could therefore allow for accurate calculations of the patterns that define the behavior of complex quantum systems like molecules without calling for the huge compute power that a classical simulation would require.

The data that is extracted from the quantum calculation about the behavior of electrons can then be combined with classical methods to simulate the signature of molecules of interest in space when they come into contact with light.

It remains true that the quantum computers that are currently available to carry out this type of calculation are limited: most systems don't break the 100-qubit count, which is not enough to model very complex molecules.

See also: Preparing for the 'golden age' of artificial intelligence and machine learning.

Benoit explains that this has not put off the center's researchers. "We are going to take something small and extrapolate the quantum behavior from that small system to the real one," says Benoit. "We can already use the data we get from a few qubits, because we know the data is exact. Then, we can extrapolate."

That is not to say that the time has come to get rid of the center's supercomputers, continues Benoit. The program is only starting, and over the course of the next eight weeks, the researchers will be finding out whether it is possible at all to extract those exact physics on a small scale, thanks to a quantum computer, in order to assist large-scale calculations.

"It's trying to see how far we can push quantum computing," says Benoit, "and see if it really works, if it's really as good as we think it is."

If the project succeeds, it could constitute an early use case for quantum computers -- one that could demonstrate the usefulness of the technology despite its current technical limitations. That in itself is a pretty good achievement; the next milestone could be the discovery of our exo-planet neighbors.

Read more:
Scientists are using quantum computing to help them discover signs of life on other planets - ZDNet

Quantum computing will break today’s encryption standards – here’s what to do about it – Verizon Communications

When you come to the fork in the road, take it. Yogi Berra

For cryptologists, Yogi Berras words have perhaps never rang more true. As a future with quantum computing approaches, our internet and stored secrets are at risk. The tried-and-true encryption mechanisms that we use every day, like Transport Layer Security (TLS) and Virtual Private Networks (VPN), could be cracked and exposed by a hacker equipped with a large enough quantum computer using Shors algorithm, a powerful algorithm with exponential speed over classical algorithms. The result?The security algorithms we use today that would take roughly 10 billion years to decrypt could take as little as 10 seconds. To prevent this, its imperative that we augment our security protocols, and we have two options to choose from: one using physics as its foundation, or one using math our figurative fork in the road.

To understand how to solve the impending security threats in a quantum era, we need to first understand the fundamentals of our current encryption mechanism. The most commonly used in nearly all internet activities TLS is implemented anytime someone performs an online activity involving sensitive information, like logging into a banking app, completing a sale on an online retailer website, or simply checking email. It works by combining the data with a 32-byte key of random 1s and 0s in a complicated and specific way so that the data is completely unrecognizable to anyone except for the two end-to-end parties sending and receiving the data. This process is called public key encryption, and currently it leverages a few popular algorithms for key exchange, e.g., Elliptic curve Diffie-Hellman (ECDH) or RSA (each named after cryptologists,) each of which are vulnerable to quantum computers. The data exchange has two steps: the key exchange and the encryption itself. The encryption of the data with a secure key will still be safe, but the delivery of the key to unlock that information (key distribution) will not be secure in the future quantum era.

To be ready for quantum computers, we need to devise a new method of key distribution, a way to safely deliver the key from one end of the connection to the other.

Imagine a scenario wherein you and a childhood friend want to share secrets, but can only do so once you each have the same secret passcode in front of you (and there are no phones.) One friend has to come up with a unique passcode, write it down on a piece of paper (while maintaining a copy for themselves,) and then walk it down the block so the other has the same passcode. Once you and your friend have the shared key, you can exchange secrets (encrypted data) that even a quantum computer cannot read.

While walking down the block though, your friend could be vulnerable to the school bully accosting him or her and stealing the passcode, and we cant let this happen. What if your friend lives across town, and not just down the block? Or even more difficult in a different country? (And where is that secret decoder ring we got from a box of sugar-coated-sugar cereal we ate as kids?)

In a world where global information transactions are happening nonstop, we need a safe way of delivering keys no matter the distance. Quantum physics can provide a way to securely deliver shared keys quicker and in larger volume, and, most importantly, immune to being intercepted. Using fiber optic cables (like the ones used by telecommunications companies,) special Quantum Key Distribution (QKD) equipment can send tiny particles (or light waves) called photons to each party in the exchange of data. The sequence of the photons encapsulates the identity of the key, a random sequence of 1s and 0s that only the intended recipients can receive to construct the key.

Quantum Key Distribution also has a sort of built-in anti-hacker bonus. Because of the no-cloning theorem (which essentially states that by their very nature, photons cannot be cloned,) QKD also renders the identity of the key untouchable by any hacker. If an attacker tried to grab the photons and alter them, it would automatically be detected, and the affected key material would be discarded.

The other way we could choose to solve the security threats posed by quantum computers is to harness the power of algorithms. Although its true the RSA and ECDH algorithms are vulnerable to Shors algorithm on a suitable quantum computer, the National Institute of Standards and Technology (NIST) is working to develop replacement algorithms that will be safe from quantum computers as part of its post-quantum cryptography (PQC) efforts. Some are already in the process of being vetted, like ones called McEliece, Saber, Crystals-Kyber, and NTRU.

Each of these algorithms has its own strong and weak points that the NIST is working through. For instance, McEliece is one of the most trusted by virtue of its longstanding resistance to attack, but it is also handicapped by its excessively long public keys that may make it impractical for small devices or web browsing. The other algorithms, especially Saber, run very well on practically any device, but, because they are relatively new, the confidence level in them from cryptographers is still relatively low.

With such a dynamic landscape of ongoing efforts, there is promise that a viable solution will emerge in time to keep our data safe.

The jury is still out. We at Verizon and most of the world rely heavily on e-commerce to sell our products and encryption to communicate via email, messaging, and cellular voice calls.All of these need secure encryption technologies in the coming quantum era. But whether we choose pre-shared keys (implemented by the awesome photon) or algorithms, further leveraging mathematics, our communications software will need updating. And while the post quantum cryptography effort is relatively new, it is not clear which algorithms will withstand scrutiny from the cryptographic community. In the meantime, we continue to peer down each fork in the road to seek the best option to take.

See more here:
Quantum computing will break today's encryption standards - here's what to do about it - Verizon Communications

Zapata, University of Hull researchers take quantum computing to deep space – FierceElectronics

While it could be many years before quantum computing becomes a common presence in daily life, the technology already has been recruited to help search for life in deep space.

Quantum software company Zapata Computing is partnering with the U.K.-based University of Hull on research to evaluate Zapatas Orquestra quantum workflow platform, to enhance a quantum application designed to detect signatures of life in deep space.

Dr David Benoit, Senior Lecturer in Molecular Physics and Astrochemistry at the University of Hull, said the evaluation is not a controlled demonstration of features, but rather a project involving real-world data. We are looking at how Orquestra performs in actual workflows that use quantum computing to provide typical real-life data, he told Fierce Electronics via email. In this project, we are really aiming for real useful data rather than a demo of capabilities.

The evaluation will run for eight weeks before the team publishes an analysis of the research. It is expected to be the first of several collaborations between Zapata and the University of Hull for quantum astrophysics applications, the parties said. The news comes as several giants in quantum computing, including Google, IBM, Amazon and Honeywell, among others, were set to attend a White House forum hosted by the Biden administration to discuss evolving uses for quantum computing.

In some cases, researchers have turned to quantum computing to tackle projects that classical computers would take too long to complete, and the University of Hull is in a similar situation, Benoit said.

He further explained, The tests envisioned are still something that a classical computer can do, however the computational time required to obtain the solution has a factorial scaling, meaning that larger size applications are likely to take days/months/years to complete (along with a very large amount of memory). The quantum counterpart is able to solve those problems in a sub-factorial manner (potentially quartic scaling), but this doesnt necessarily mean its faster for all systems, just that the computational effort is much reduced for large systems. In this application, we are aiming for a scalable way of performing accurate calculations, and this is exactly what we can obtain using quantum computers.

Just how big is the task at hand? A statement from Zapata noted that in 2016 MIT researchers suggested a list of more than 14,000 molecules that could indicate signs of life in atmospheres of far-away exoplanets. However, little is currently known about how these molecules vibrate and rotate in response to infrared radiation generated by nearby stars. The University of Hull is trying to build a database of detectable biological signatures using new computational models of molecular rotations and vibrations.

Though fault tolerance and error correction remain a challenge for quantum computing models, Benoit said researchers are not concerned with the performance of such so-called Noisy Intermediate-Scale Quantum (NISQ) devices.

Our method actually uses the statistical nature of the noise/errors to try and obtain an accurate answer, so we take the fact that the results will be noisy as a useful thing, he said. Obviously, the better the error correction or the less noisy the device, the better the outcome. However, using Orquestra enables us to potentially switch platforms without having to re-implement large parts of the code, which means that as better hardware comes along, we can readily compute with it.

Benoit added that Orquestra will help researchers generate valuable insights from NISQ devices, and that researchers can build applications that use these NISQ devices today with the capacity to leverage the more powerful quantum devices of the future. The result should be extremely accurate calculations of the key variable defining atom-atom interactions electronic correlation and thus could improve scientists ability to detect the building blocks of life in space. This is particularly important because even simple molecules, such as oxygen or nitrogen, have complex interactions that require very accurate calculations.

RELATED: Even noisy quantum systems are revolutionary: Classiq CEO

See the rest here:
Zapata, University of Hull researchers take quantum computing to deep space - FierceElectronics

How science and diplomacy inform each other – SWI swissinfo.ch – swissinfo.ch

The potential of quantum computing is one of the focuses ofa summit in Genevathataimstoimprove the dialogue between diplomatsandthescientific communityto safeguard our collective welfare.Tworesearchersexplaintherewards and risks ofquantum computing.

Dorian Burkhalter

Thescientists, diplomats, captains of industry and investors gathering inGenevafor the first-ever summit of theScience and Diplomacy Anticipator (GESDA)External linkwill, among other lofty goals, discuss howpolicymakersshouldprepare forquantumcomputing, provide governance for it,and ensure thatitis accessible to all.But what are quantum computers, and whatwill they be able to do?

Quantum computersperform calculations byexploitingtheproperties ofquantummechanics, which describes thebehaviourofatoms andparticles at a subatomic scale,for example,howelectrons interact with each other.As quantum computersoperate onthe same set of rules asmolecules do,they are,for instance,much better suitedto simulate them than classical computers are.

Today, quantum computers are small and unreliable. They are not yet able to solve problems classical computers cannot.

There is still some uncertainty, but I don't see any reason to not be able to develop such a quantum computer, although it's a huge engineering challenge, says Nicolas Gisin, professor emeritus at the University of Genevaand at the Schaffhausen Institute of Technology,and an expert in quantum technologies.

Quantum computerscouldhelp solvesome of the worlds most pressing problems. They couldaccelerate thediscovery ofmaterials for longer-lasting batteries,bettersolar panels, andnew medicaltreatments.They could also break current encryptionmethods, meaning that information secure today maybecomeat risk tomorrow.

For private companies, winning the race to develop reliable and powerful quantum computers means reaping large economic rewards. For countries, it means gaining a significant national security advantage.

Gisinsaysquantum computers capable of simulating new molecules could be 5-10 years away, while more powerful quantum computers that can break encryption could become a reality in 10-20 years.

The pace at whichthesetechnologies develop will depend on the level of investments made.Large technology firms such as IBM, Microsoft, and Googleare all developing quantum computers, while the US, China,and Europeareinvestingheavilyinquantum technologies.

Anticipating the arrival ofthesetechnologies isimportant,because you play through different scenarios, and some you may like,some you may not like,says HeikeRiel, IBM Fellow at IBMResearch in Zurich.Then you can also think of what type of regulations you may need,or what type of research you need to foster.

TheSwiss governmentis a supporter oftheGESDAfoundationwhichorganisedits first summit in Geneva fromOctober 7-9.The conferencebringstogetherscientists, diplomats, andother stakeholders to discussfuturescientific developmentsandtoanticipate their impacton society.

To work well, scientists needfavourableframeworks. There is definitely a back and forth between science and diplomacy, and science and politics, because diplomacy can also advance science, Riel says.

Politicians and diplomatsare responsible forcreatingopportunities for researchers to collaborate across borders. Initiatives and funding aimed at addressingspecifictechnical problems influence the directionofresearchefforts.

The fact that Switzerland is outside of the European research framework is an absurdity for everyone because this is just going to harm both Switzerland and Europe, Gisin says. It would be really important that Europe and Switzerland understand that we will both benefit if we talk together more and collaborate more.

Since July 2021, Switzerland haslimited accessto Horizon Europe, the European Unions flagship funding program for research and innovation due to a breakdown in negotiations on regulating bilateral relations.

Many of ourproblemstodaysuch as climate change or the Covid-19 pandemicare globalin nature.Getting governments across the world to agree to work togetheronsolutions is not easy, but researcherscan help.

The research communitylikes to worktogether globally, and this collaboration has helped historically to overcome certainbarriers, Riel says, emphasising the importance of communication in this regard.

Researchers working togetheron a global scaleduring the pandemichasled to vaccines being developed atarecord-breakingspeed.During the Cold Warat theEuropean Organization for Nuclear Research (CERN) in Geneva,Sovietscientistsremained involvedin projectswhich allowedforsomecommunicationto take place.

In science, we have a common ground and it's kind of universal; the scientists in the UnitedStates, Canada, Australia,Europeand China, they all work on the same problems, they all try to solve the same technical issues, Riel says.

Scientists also have an important role to play to inform and share facts with both policymakers and the public, even if politicians cannotrely solely on scientific evidence when making decisions. The challenges of communicatingfact-based evidencehavebeen laid bare during the pandemic.

I think it's very important that we also inform the society of what we are doingthat it's not a mystery thatscares people, Riel says.

Ultimately,to successfullyaddress global challenges scientists,diplomats and politicians willhave towork together.

It's really a cooperation between the global collaboration of the scientists and the global collaboration of the diplomats to solve the problems together, Riel says.

See the rest here:
How science and diplomacy inform each other - SWI swissinfo.ch - swissinfo.ch

IonQ Unveils The Power Of Its Next-Generation Quantum Computer Along With Quantum Finance Announcements – Forbes

IonQ

This week, IonQ, Inc. (IonQ) announced the research results for two separate finance-related quantum research projects. The announcement coveredone with Fidelity Center for Applied Technology, and one with Goldman Sachs and QC Ware.

While classical computers use bits for computation, quantum computers use quantum bits or qubits. IonQ uses ion qubits created using precision lasers to remove an outer electron from an atom of ytterbium. IonQ has plans to evolve its existing architecture to a more advanced version sometime in the future. The power of its new hardware was demonstrated in the Goldman Sachs and QC-Ware research below. Moor Insights & Strategy previously wrote about IonQs evolution to its new architecturehere.

Even though the finance industry is computationally intensive, applications containing large numbers of variables are too complex to perform on classical computers. Eventually, solutions for classically intractable problems will become available using quantum computers. Most experts believe it will likely take another five to seven years before todays quantum machines have enough power to move from experimental prototypes to production environments.

When that happens, financial institutions will begin to use quantum computers for everything from pricing to option derivatives to risk management to liquidity coverage. Even though that is still a few years away, most major finance companies have already begun to staff quantum computing research departments.

Here is a summary of IonQs recent announcements:

IonQ and Fidelity Center for Applied Technology (FCAT)

FCAT

FCAT and IonQ researchers used IonQ's cloud-based quantum computer to develop a quantum machine learning (QML) proof of concept that achieved far better results than previous research.It's important to note that this research also demonstrated that quantum computers can outperform classical computers for limited price correlation analysis in the finance industry. Technical details of the study are availablehere.

Historical data is heavily used for training and analysis in today's financial models. For the output to be correct and free from bias, the training data must accurately reflect the characteristics of the modeled scenario.A standard testing process called "backtesting" uses data separate from the training data but believed to be similar can determine if a model produces accurate results.However, backtesting is often insufficient because it is challenging to obtain test data that accurately depicts all the market scenarios represented in an extensive training dataset.

The FCAT-IonQ team built a quantum AI model that created a new and more accurate set of synthetic data to obtain accurate data for backtesting. The synthetic data was created from samples of the same data used to train the model. This procedure is much like the uncanny ability of AI models trained on facial images to create new and authentic faces that look identical to real people.

Instead of facial images, the IonQ and FCAT teams modeled numerical relationships contained in the daily returns of Apple and Microsoft stock from 2010 to 2018. Two quantum machine learning algorithms used this data to produce a highly accurate synthetic data set for backtesting.

A few considerations:

IonQ, Goldman Sachs, and QC-Ware

IonQ

Using IonQ's newest quantum computing hardware, Goldman Sachs and QC-Ware teamed up to push quantum boundaries beyond previous research. The team demonstrated a quantum algorithm developed by QC-Ware for Monte Carlo simulations on IonQ's recently announced quantum processing unit (QPU), Evaporated Glass Trap. Applications of quantum Monte Carlo methods to problems in computational finance have been the subject of several previous research papers. That research involved applying quantum Monte Carlo to specific financial problems such as pricing simple options and credit risk calculations.

According to IonQ, its new QPU has an order of magnitude better fidelity and better throughput than its current generation of quantum processors. In its press release, Peter Chapman, CEO and President of IonQ, emphasized the importance of using a combination of state-of-the-art hardware and best-in-class quantum algorithms.

In the published results, the quantum researchers also attributed the projects success to the high fidelity of IonQ's quantum hardware. The researchers also stated that similar experiments were attempted using other quantum hardware available on the cloud but obtained "considerably worse results."

Quantum computers are expected to not only have a major impact for Monte Carlo simulations, but in other areas of science and engineering as well. Monte Carlo simulations demonstrated by this research are especially important to finance in the areas of risk and derivative pricing for such things as options.Some estimates size the derivatives market to be worth over one quadrillion dollars. Monte Carlo simulations are usually run on classical computers and require the algorithm to be run a number of times to obtain an estimated answer with acceptable precision. When large fault-tolerant quantum computers become available, it will significantly reduce the amount of time needed to obtain solutions for complicated Monte Carlo problems containing a large number of variables. The precision of estimated answers can be improved by increasing the number of samples. For example, to increase a classical computer's answer precision by one order of magnitude requires increasing sampling by 100X.For an equivalent accuracy, a quantum computer would only require a sampling increase of 10X.In finance, time is an important commodity. A few seconds in a large, fast-moving market such as stocks and options can mean the difference between a profit or a loss.

Notes:

Note: Moor Insights & Strategy writers and editors may have contributed to this article.

Moor Insights & Strategy, like all research and analyst firms, provides or has provided paid research, analysis, advising, or consulting to many high-tech companies in the industry, including 8x8, Advanced Micro Devices, Amazon, Applied Micro, ARM, Aruba Networks, AT&T, AWS, A-10 Strategies,Bitfusion, Blaize, Box, Broadcom, Calix, Cisco Systems, Clear Software, Cloudera,Clumio, Cognitive Systems, CompuCom, Dell, Dell EMC, Dell Technologies, Diablo Technologies, Digital Optics,Dreamchain, Echelon, Ericsson, Extreme Networks, Flex, Foxconn, Frame (now VMware), Fujitsu, Gen Z Consortium, Glue Networks, GlobalFoundries, Google (Nest-Revolve), Google Cloud, HP Inc., Hewlett Packard Enterprise, Honeywell, Huawei Technologies, IBM, Ion VR,Inseego, Infosys, Intel, Interdigital, Jabil Circuit, Konica Minolta, Lattice Semiconductor, Lenovo, Linux Foundation,MapBox, Marvell,Mavenir, Marseille Inc, Mayfair Equity, Meraki (Cisco),Mesophere, Microsoft, Mojo Networks, National Instruments, NetApp, Nightwatch, NOKIA (Alcatel-Lucent), Nortek,Novumind, NVIDIA, Nuvia, ON Semiconductor, ONUG, OpenStack Foundation, Oracle, Poly, Panasas,Peraso, Pexip, Pixelworks, Plume Design, Poly,Portworx, Pure Storage, Qualcomm, Rackspace, Rambus,RayvoltE-Bikes, Red Hat,Residio, Samsung Electronics, SAP, SAS, Scale Computing, Schneider Electric, Silver Peak, SONY,Springpath, Spirent, Splunk, Sprint, Stratus Technologies, Symantec, Synaptics, Syniverse, Synopsys, Tanium, TE Connectivity,TensTorrent,TobiiTechnology, T-Mobile, Twitter, Unity Technologies, UiPath, Verizon Communications,Vidyo, VMware, Wave Computing,Wellsmith, Xilinx, Zebra,Zededa, and Zoho which may be cited in blogs and research.

Go here to read the rest:
IonQ Unveils The Power Of Its Next-Generation Quantum Computer Along With Quantum Finance Announcements - Forbes