Archive for the ‘Quantum Computer’ Category

Why Is Quantum Computing So Hard to Explain – Quanta Magazine

Quantum computers, you might have heard, are magical uber-machines that will soon cure cancer and global warming by trying all possible answers in different parallel universes. For 15 years, on my blog and elsewhere, Ive railed against this cartoonish vision, trying to explain what I see as the subtler but ironically even more fascinating truth. I approach this as a public service and almost my moral duty as a quantum computing researcher. Alas, the work feels Sisyphean: The cringeworthy hype about quantum computers has only increased over the years, as corporations and governments have invested billions, and as the technology has progressed to programmable 50-qubit devices that (on certain contrived benchmarks) really can give the worlds biggest supercomputers a run for their money. And just as in cryptocurrency, machine learning and other trendy fields, with money have come hucksters.

In reflective moments, though, I get it. The reality is that even if you removed all the bad incentives and the greed, quantum computing would still be hard to explain briefly and honestly without math. As the quantum computing pioneer Richard Feynman once said about the quantum electrodynamics work that won him the Nobel Prize, if it were possible to describe it in a few sentences, it wouldnt have been worth a Nobel Prize.

Not that thats stopped people from trying. Ever since Peter Shor discovered in 1994 that a quantum computer could break most of the encryption that protects transactions on the internet, excitement about the technology has been driven by more than just intellectual curiosity. Indeed, developments in the field typically get covered as business or technology stories rather than as science ones.

That would be fine if a business or technology reporter could truthfully tell readers, Look, theres all this deep quantum stuff under the hood, but all you need to understand is the bottom line: Physicists are on the verge of building faster computers that will revolutionize everything.

The trouble is that quantum computers will not revolutionize everything.

Yes, they might someday solve a few specific problems in minutes that (we think) would take longer than the age of the universe on classical computers. But there are many other important problems for which most experts think quantum computers will help only modestly, if at all. Also, while Google and others recently made credible claims that they had achieved contrived quantum speedups, this was only for specific, esoteric benchmarks (ones that I helped develop). A quantum computer thats big and reliable enough to outperform classical computers at practical applications like breaking cryptographic codes and simulating chemistry is likely still a long way off.

But how could a programmable computer be faster for only some problems? Do we know which ones? And what does a big and reliable quantum computer even mean in this context? To answer these questions we have to get into the deep stuff.

Lets start with quantum mechanics. (What could be deeper?) The concept of superposition is infamously hard to render in everyday words. So, not surprisingly, many writers opt for an easy way out: They say that superposition means both at once, so that a quantum bit, or qubit, is just a bit that can be both 0 and 1 at the same time, while a classical bit can be only one or the other. They go on to say that a quantum computer would achieve its speed by using qubits to try all possible solutions in superposition that is, at the same time, or in parallel.

This is what Ive come to think of as the fundamental misstep of quantum computing popularization, the one that leads to all the rest. From here its just a short hop to quantum computers quickly solving something like the traveling salesperson problem by trying all possible answers at once something almost all experts believe they wont be able to do.

The thing is, for a computer to be useful, at some point you need to look at it and read an output. But if you look at an equal superposition of all possible answers, the rules of quantum mechanics say youll just see and read a random answer. And if thats all you wanted, you couldve picked one yourself.

What superposition really means is complex linear combination. Here, we mean complex not in the sense of complicated but in the sense of a real plus an imaginary number, while linear combination means we add together different multiples of states. So a qubit is a bit that has a complex number called an amplitude attached to the possibility that its 0, and a different amplitude attached to the possibility that its 1. These amplitudes are closely related to probabilities, in that the further some outcomes amplitude is from zero, the larger the chance of seeing that outcome; more precisely, the probability equals the distance squared.

But amplitudes are not probabilities. They follow different rules. For example, if some contributions to an amplitude are positive and others are negative, then the contributions can interfere destructively and cancel each other out, so that the amplitude is zero and the corresponding outcome is never observed; likewise, they can interfere constructively and increase the likelihood of a given outcome. The goal in devising an algorithm for a quantum computer is to choreograph a pattern of constructive and destructive interference so that for each wrong answer the contributions to its amplitude cancel each other out, whereas for the right answer the contributions reinforce each other. If, and only if, you can arrange that, youll see the right answer with a large probability when you look. The tricky part is to do this without knowing the answer in advance, and faster than you could do it with a classical computer.

Twenty-seven years ago, Shor showed how to do all this for the problem of factoring integers, which breaks the widely used cryptographic codes underlying much of online commerce. We now know how to do it for some other problems, too, but only by exploiting the special mathematical structures in those problems. Its not just a matter of trying all possible answers at once.

Compounding the difficulty is that, if you want to talk honestly about quantum computing, then you also need the conceptual vocabulary of theoretical computer science. Im often asked how many times faster a quantum computer will be than todays computers. A million times? A billion?

This question misses the point of quantum computers, which is to achieve better scaling behavior, or running time as a function of n, the number of bits of input data. This could mean taking a problem where the best classical algorithm needs a number of steps that grows exponentially with n, and solving it using a number of steps that grows only as n2. In such cases, for small n, solving the problem with a quantum computer will actually be slower and more expensive than solving it classically. Its only as n grows that the quantum speedup first appears and then eventually comes to dominate.

But how can we know that theres no classical shortcut a conventional algorithm that would have similar scaling behavior to the quantum algorithms? Though typically ignored in popular accounts, this question is central to quantum algorithms research, where often the difficulty is not so much proving that a quantum computer can do something quickly, but convincingly arguing that a classical computer cant. Alas, it turns out to be staggeringly hard to prove that problems are hard, as illustrated by the famous P versus NP problem (which asks, roughly, whether every problem with quickly checkable solutions can also be quickly solved). This is not just an academic issue, a matter of dotting is: Over the past few decades, conjectured quantum speedups have repeatedly gone away when classical algorithms were found with similar performance.

Note that, after explaining all this, I still havent said a word about the practical difficulty of building quantum computers. The problem, in a word, is decoherence, which means unwanted interaction between a quantum computer and its environment nearby electric fields, warm objects, and other things that can record information about the qubits. This can result in premature measurement of the qubits, which collapses them down to classical bits that are either definitely 0 or definitely 1. The only known solution to this problem is quantum error correction: a scheme, proposed in the mid-1990s, that cleverly encodes each qubit of the quantum computation into the collective state of dozens or even thousands of physical qubits. But researchers are only now starting to make such error correction work in the real world, and actually putting it to use will take much longer. When you read about the latest experiment with 50 or 60 physical qubits, its important to understand that the qubits arent error-corrected. Until they are, we dont expect to be able to scale beyond a few hundred qubits.

Once someone understands these concepts, Id say theyre ready to start reading or possibly even writing an article on the latest claimed advance in quantum computing. Theyll know which questions to ask in the constant struggle to distinguish reality from hype. Understanding this stuff really is possible after all, it isnt rocket science; its just quantum computing!

See the article here:
Why Is Quantum Computing So Hard to Explain - Quanta Magazine

With cyberattacks on the rise, organizations are already bracing for devastating quantum hacks – CNBC

Amidst the houses and the car parks sits GCHQ, the Government Communications Headquarters, in this aerial photo taken on October 10, 2005.

David Goddard | Getty Images

LONDON A little-known U.K. company called Arqit is quietly preparing businesses and governments for what it sees as the next big threat to their cyber defenses: quantum computers.

It's still an incredibly young field of research, however some in the tech industry including the likes of Google, Microsoft and IBM believe quantum computing will become a reality in the next decade. And that could be worrying news for organizations' cyber security.

David Williams, co-founder and chairman of Arqit, says quantum computers will be several millions of times faster than classical computers, and would be able to break into one of the most widely-used methods of cryptography.

"The legacy encryption that we all use to keep our secrets safe is called PKI," or public-key infrastructure, Williams told CNBC in an interview. "It was invented in the 70s."

"PKI was originally designed to secure the communications of two computers," Williams added. "It wasn't designed for a hyper-connected world where there are a billion devices all over the world communicating in a complex round of interactions."

Arqit, which is planning to go public via a merger with a blank-check company, counts the likes of BT, Sumitomo Corporation, the British government and the European Space Agency as customers. Some of its team previously worked for GCHQ, the U.K. intelligence agency. The firm only recently came out of "stealth mode" a temporary state of secretness and its stock market listing couldn't be more timely.

The past month has seen a spate of devastating ransomware attacks on organizations from Colonial Pipeline, the largest fuel pipeline in the U.S., to JBS, the world's largest meatpacker.

Microsoft and several U.S. government agencies, meanwhile, were among those affected by an attack on IT firm SolarWinds. President Joe Biden recently signed an executive order aimed at ramping up U.S. cyber defenses.

Quantum computing aims to apply the principles of quantum physics a body of science that seeks to describe the world at the level of atoms and subatomic particles to computers.

Whereas today's computers use ones and zeroes to store information, a quantum computer relies on quantum bits, or qubits, which can consist of a combination of ones and zeroes simultaneously, something that's known in the field as superposition. These qubits can also be linked together through a phenomenon called entanglement.

Put simply, it means quantum computers are far more powerful than today's machines and are able to solve complex calculations much faster.

Kasper Rasmussen, associate professor of computer science at the University of Oxford, told CNBC that quantum computers are designed to do "certain very specific operations much faster than classical computers."

That it is not to say they'll be able to solve every task. "This is not a case of: 'This is a quantum computer, so it just runs whatever application you put on there much faster.' That's not the idea," Rasmussen said.

This could be a problem for modern encryption standards, according to experts.

"When you and I use PKI encryption, we do halves of a difficult math problem: prime factorisation," Williams told CNBC. "You give me a number and I work out what are the prime numbers to work out the new number. A classic computer can't break that but a quantum computer will."

Williams believes his company has found the solution. Instead of relying on public-key cryptography, Arqit sends out symmetric encryption keys long, random numbers via satellites, something it calls "quantum key distribution." Virgin Orbit, which invested in Arqit as part of its SPAC deal, plans to launch the satellites from Cornwall, England, by 2023.

Some experts say it will take some time before quantum computers finally arrive in a way that could pose a threat to existing cyber defenses. Rasmussen doesn't expect them to exist in any meaningful way for at least another 10 years. But he's not complacent.

"If we accept the fact that quantum computers will exist in 10 years, anyone with the foresight to record important conversations now might be in a position to decrypt them when quantum computers come about," Rasmussen said.

"Public-key cryptography is literally everywhere in our digitized world, from your bank card, to the way you connect to the internet, to your car key, to IOT (internet of things) devices," Ali Kaafarani, CEO and founder of cybersecurity start-up PQShield, told CNBC.

The U.S. Commerce Department's National Institute of Standards and Technology is looking to update its standards on cryptography to include what's known as post-quantum cryptography, algorithms that could be secure against an attack from a quantum computer.

Kaafarani expects NIST will decide on new standards by the end of 2021. But, he warns: "For me, the challenge is not the quantum threat and how can we build encryption methods that are secure. We solved that."

"The challenge now is how businesses need to prepare for the transition to the new standards," Kaafarani said. "Lessons from the past prove that it's too slow and takes years and decades to switch from one algorithm to another."

Williams thinks firms need to be ready now, adding that forming post-quantum algorithms that take public-key cryptography and make it "even more complex" are not the solution. He alluded to a report from NIST which noted challenges with post-quantum cryptographic solutions.

Read more here:
With cyberattacks on the rise, organizations are already bracing for devastating quantum hacks - CNBC

The ‘second quantum revolution’ is almost here. We need to make sure it benefits the many, not the few – The Conversation AU

Over the past six years, quantum science has noticeably shifted, from the domain of physicists concerned with learning about the universe on extremely small scales, to a source of new technologies we all might use for practical purposes. These technologies make use of quantum properties of single atoms or particles of light. They include sensors, communication networks, and computers.

Quantum technologies are expected to impact many aspects of our society, including health care, financial services, defence, weather modelling, and cyber security. Clearly, they promise exciting benefits. Yet the history of technology development shows we cannot simply assume new tools and systems will automatically be in the public interest.

We must look ahead to what a quantum society might entail and how the quantum design choices made today might impact how we live in the near future. The deployment of artificial intelligence and machine learning over the past few years provides a compelling example of why this is necessary.

Lets consider an example. Quantum computers are perhaps the best-known quantum technology, with companies like Google and IBM competing to achieve quantum computation. The advantage of quantum computers lies in their ability to tackle incredibly complex tasks that would take a normal computer millions of years. One such task is simulating molecules behaviour to improve predictions about the properties of prospective new drugs and accelerate their development.

One conundrum posed by quantum computing is the sheer expense of investing in the physical infrastructure of the technology. This means ownership will likely be concentrated among the wealthiest countries and corporations. In turn, this could worsen uneven power distribution enabled by technology.

Other considerations for this particular type of quantum technology include concerns about reduced online privacy.

How do we stop ourselves blundering into a quantum age without due forethought? How do we tackle the societal problems posed by quantum technologies, while nations and companies race to develop them?

Last year, CSIRO released a roadmap that included a call for quantum stakeholders to explore and address social risks. An example of how we might proceed with this has begun at the World Economic Forum (WEF). The WEF is convening experts from industry, policy-making, and research to promote safe and secure quantum technologies by establishing an agreed set of ethical principles for quantum computing.

Australia should draw on such initiatives to ensure the quantum technologies we develop work for the public good. We need to diversify the people involved in quantum technologies in terms of the types of expertise employed and the social contexts we work from so we dont reproduce and amplify existing problems or create new ones.

Read more: Scientists want to build trust in science and technology. The alternative is too risky to contemplate

While we work to shape the impacts of individual quantum technologies, we should also review the language used to describe this second quantum revolution.

The rationale most commonly used to advocate for the field narrowly imagines public benefit of quantum technologies in terms of economic gain and competition between nations and corporations. But framing this as a race to develop quantum technologies means prioritising urgency, commercial interests and national security at the expense of more civic-minded concerns.

Its still early enough to do something about the challenges posed by quantum technologies. Its also not all doom and gloom, with a variety of initiatives and national research and development policies setting out to tackle these problems before they are set in stone.

We need discussions involving a cross-section of society on the potential impacts of quantum technologies on society. This process should clarify societal expectations for the emerging quantum technology sector and inform any national quantum initiative in Australia.

Read more: Why are scientists so excited about a recently claimed quantum computing milestone?

Continue reading here:
The 'second quantum revolution' is almost here. We need to make sure it benefits the many, not the few - The Conversation AU

Q-Day Is Coming Sooner Than We Think – Forbes

Q-Day is the term some experts use to describe when large-scale quantum computers are able to factorize the large prime numbers that underlie our public encryption systems, such as the ones that are supposed to protect our bank accounts, financial markets, and most vital infrastructure.Thats a feat thats all but impossible for even the fastest supercomputers but which the unique features of quantum computers, using the physics of superpositioning and entanglement, will be able to deliver.

Theres a growing consensus that this quantum threat is real; theres no agreement how long it will take before a quantum computer has the 4000 or so stable qubits it will need to meet the requirements of Shors algorithm for cracking those encryption systems.

ADVERTISEMENT

For example, it would take a classical computer 300 trillion years to crack an RSA-2048 bit encryption key.A quantum computer can do the same job in just ten seconds with 4099 stable qubitsbut getting to that number is the main problem quantum computer engineers face since the stability or coherence of qubits lasts only for microseconds. Todays most entangled computer, Googles GOOG Bristlecone, has just 72 stable qubits.

Nonetheless, I have been arguing for the past four years, including in this column, that Q-Day is likely to come sooner than even quantum scientists can predict, and that the time to get ready to protect our vulnerable data and networks is now. Others prefer to procrastinate, citing other experts who say such a threat is at least a decade or more away. The fact that the National Institute of Standards and Technology wont have its quantum-resistant algorithm standards ready until 2024, and expects the rollout to space out for another five to fifteen years, has helped to encourage complacency disguised as confidence.

Quantum computer. Conceptual computer artwork of electronic circuitry with blue light passing ... [+] through it, representing how data may be controlled and stored in a quantum computer.

But new developments in quantum science suggest that this complacency is misplaced. If the large-scale quantum computer is the ultimate thermonuclear device in cyberwarfare, the dirty bomb is the quantum annealerand its probably going to be here sooner than even experts thought.

So-called quantum annealers like the one Canada-based D-Wave Systems, Inc. uses, are able to calculate the lowest energy level between the qubits different states of entanglement, which equals the optimal solution. These machines have proven their worth in solving optimization problems that usually stump classical computers, as I explained in a column last month.

Not surprisingly, scientists have been quietly finding ways to turn factorizationthe decryption process that leads to Q-Dayinto an optimization problem instead of relying Shors algorithm, the paradigm for discussing quantum decryption since the 1990s. In 2019 scientific papers emerged that showed how to do this, including factorizing integers using noisy qubits, i.e. swarms of quantum bits that arent perfectly entangled the way a large-scale computer requires.

One was authored by Chinese scientists who found a way to factor a large number using only 89 noisy qubits. They then showed its possible to factorize a RSA-768 encryption numberthe current factorization record using classical computerswith 147,454 noisy qubits. Thats a tiny fraction of the millions of qubits a large quantum computer would need to reach the 4000 stable qubit threshold, and within reach of the architecture of an annealer like D-Wave Systems.

ADVERTISEMENT

That same year a pair of researchers from Google and the Royal Institute of Technology at Stockholm published a paper showing how to crack 2028-bit RSA integers in 8 hours using 20 million noisy qubits.Given the fact that in 2012 scientists speculated that it would take 1 billion qubits to perform this feat, it wont be long before researchers show they can get there with a lot fewer than 20 million qubits.

Sure enough, in 2020 three Chinese researchers found a way to use the D-Wave quantum computer to factorize large integers, that completely bypasses Shors algorithm. Thus, they concluded, post-quantum cryptography should consider further the potential of the D-Wave quantum computer for deciphering the RSA cryptosystem in future.

In effect, these researchers found a way to turn decryption using quantum technology into a straightforward process on a timeline much shorter than ten years: perhaps four to five years is more likely.

ADVERTISEMENT

This was what Chinese scientists are openly publishing.We dont know whats happening behind the scenes, but we can bet if theres a short cut to achieve what a large-scale quantum computer can do using annealing technology, their military and intelligence services will want to find out.

All this changes the timetable for Q-Day significantly, and our strategic calculations.Not only is quantum-based decryption coming our way sooner, but thanks to annealing that code-breaking feature will be more accessible to other machines than the hugely expensive large-scale computers Google, Microsoft, and others are working onwhich puts the threat within reach of small-state or even non-state actors.

Thats why the dirty bomb analogy is so apt. Why gamble with the quantum future?Annealing technology makes getting quantum ready more important, and getting started now, more imperative than ever.

ADVERTISEMENT

Read the original here:
Q-Day Is Coming Sooner Than We Think - Forbes

Global Quantum Computing Market to Gain $667.3 Million and Surge at a CAGR of 30.0% from 2020-2027 Timeframe – Exclusive [193 pages] COVID-19 Impact…

New York, USA, June 07, 2021 (GLOBE NEWSWIRE) -- According to a recent report studied by Research Dive, the global quantum computing market is speculated to exceed $667.3 million by the end of 2027 , rising from a market size of $88.2 million in 2019 , at a growth rate of 30.0% during 2020-2027 estimated timeframe. The report highlights the coronavirus mayhem impact on the market, major drivers, hindrances, and regional outlook of the market. The research methodology used in the report is a combination of both primary and secondary research methods.

Download FREE Sample Report of the Global Quantum Computing Market: https://www.researchdive.com/download-sample/8332

Covid-19 Outbreak Impact on the Global Market

The quantum computing market is anticipated to experience a positive impact globally during the coronavirus crises. The reason for market growth is that quantum technology offers augmented performance computing that can shift dynamics for quantum chemistry. Further, quantum technology provides exponential speed for amplified optimization and vital calculations. These facets are predicted to govern the market growth during the coronavirus emergency.

Check out How COVID-19 impacts the Global Quantum Computing Market. Click here to Connect with our Analyst to get more Market Insight: https://www.researchdive.com/connect-to-analyst/8332

Aspects Impacting the Market

The global quantum computing market is projected to witness progressive growth due to rise in the cyber-attack cases. Quantum technology assures security to software systems and applications and protects vital data of organizations from attacks such as ransomware, phishing, worms, and much more. Furthermore, key companies of the market are planning strategic frameworks by utilizing quantum personal computers for cyber-security. These aspects are anticipated to surge the market growth during the forecasted timeframe. However, a lack of awareness of quantum technology and unskilled employees is expected to hinder the market growth. On the other hand, the ability of quantum technology to aid farmers in augmenting the yield and efficiency of plants is projected to create promising opportunities for the market growth.

Access Varied Market Reports Bearing Extensive Analysis of the Market Situation, Updated With The Impact of COVID-19: https://www.researchdive.com/covid-19-insights

Consulting Solutions Sub-Segment to be the Most Profitable

From the offerings type segment, the consulting solutions sub-segment is anticipated to reach newer heights during the timeframe. The sub-segment is expected to register a revenue of $354.0 million by the end of the 2027 timeframe. The sub-segment upsurge is due to the usage of quantum computing in applications such as drug discovery, formulation of chemicals, material science, and automotive. Apart from this, it is also used in the chemical industry, aerospace & defense, healthcare, and energy & power sectors. These wide-scale applications are speculated to bolster the growth of the sub-segment during the forecasted years.

Check out all Information and communication technology & media Industry Reports: https://www.researchdive.com/information-and-communication-technology-and-media

Machine Learning Sub-Segment to Gain Maximum Revenue

From the application segment, the machine learning sub-segment is projected to achieve maximum revenue during the forecasted timeframe. The sub-segment is anticipated to cross $236.9 million by the end of 2027, rising from a market share of $29.7 million in the year 2019. The ability of quantum learning to accelerate machine learning such as optimization, deep learning, Kernel evaluation, and linear algebra is expected to propel the sub-segment market growth during the analyzed timeframe.

Finance & Banking Sub-Segment to Witness Rapid Growth

From the end-user segment, the finance & banking sub-division is speculated to grow rapidly and register a revenue of $159.2 million by 2027 . The sub-segment growth is due to the usage of quantum technology in banking for supporting the large-frequency trading aspect.

Regional Outlook

The European market was expected to hold a market size of $28.2 million in 2019 and is speculated to garner a revenue of $221.2 million by the end of 2027. The market growth is mainly attributed to the extensive use of quantum computing in fields such as chemicals, healthcare, pharmaceuticals, and utilities. Moreover, its usage in cryptography, novel drugs, defense, and cybersecurity is predicted to drive the global market during the estimated timeframe.

Major Key Players

QC Ware, Corp. Cambridge Quantum Computing Limited D-Wave Systems Inc., International Business Machines Corporation Rigetti Computing 1QB Information Technologies River Lane Research StationQ Microsoft Anyon Google Inc.

These leading players are planning varied strategies such as acquisitions of companies, product developments, tie-ups & collaborations for maximizing profits, research & development, and organizational development to gain an upper edge in the market worldwide. For example, in April 2021, Nvidia, a computer systems design services company, revealed cuQuantum SDK. This product is a developmental platform for revitalizing quantum circuits on GPU-accelerated systems.

The report consists of various facets of all the vital players that are operative in the market such as financial performance, product portfolio, present strategic moves, major developments and SWOT. Click Here to Get Absolute Top Companies Development Strategies Summary Report.

TRENDING REPORTS WITH COVID-19 IMPACT ANALYSIS

Advanced Persistent Threat (APT) Protection Market https://www.researchdive.com/8335/advanced-persistent-threat-apt-protection-market

Network Slicing Market https://www.researchdive.com/5670/network-slicing-market

Signal Intelligence (SIGINT) Market https://www.researchdive.com/5478/signals-intelligence-sigint-market

Application Security Market https://www.researchdive.com/5735/application-security-market

See the rest here:
Global Quantum Computing Market to Gain $667.3 Million and Surge at a CAGR of 30.0% from 2020-2027 Timeframe - Exclusive [193 pages] COVID-19 Impact...