Archive for the ‘Quantum Computer’ Category

The risk of giving in to quantum progress – ComputerWeekly.com

Over the next few years the tech industry has a roadmap to overcome the challenges facing quantum computing. This will pave the way to growth in mainstream quantum computing to solve hard problems.

There are numerous opportunities, from finding a cure for cancer to the development of new, more sustainable materials and tackling climate change. But a recent short film on quantum ethics has highlighted the risks, which may be as profound as the Manhattan Project that led to two atomic bombs being dropped on Hiroshima and Nagasaki in 1945.

One interviewee featured in the film, Ilana Wisby, CEO, Oxford Quantum Circuits said: We wont fully understand the impact of what we have until we have got the systems, but it will be revolutionising and will be lucrative for some.

The experts discussed the need for a debate across society to assess and appreciate the risk quantum computing will pose. Ilyas Khan, CEO Cambridge Quantum Computing said: We may be able to shift the boundaries of what can and cannot be done with machines.

Faye Wattleton, co-found EeroQ Quantum urged the innovators and policy makers to take a step back to consider the implications and its impact on humanity. If we can do in a few minutes what it would take 10,000 years to do with current technology then that requires careful consideration. From a societal perspective, what does this kind of power mean?

Just because a quantum computer makes it possible to solve an insoluble problem, does not mean it should be solved.

In the past, there was oversight and governance of technological breakthroughs like the printing press, which paved the way to mass media and the railways, which led to mass transit. But IT has become arrogant. Its proponents say that it moves far too quickly to be restrained by a regulatory framework. As an expert at a recent House of Lords Select Committee meeting warned, policy-makers are not very good at looking ahead at the long term impact of a new technological development. In the 1990s, who would have considered that the growth of the internet, social media and mobile phones would be a stimulant for fake news and a catalyst for rogue states to influence elections in other countries.

Khan describes the lack of controls on the internet like being asleep at the wheel. What are the implications of a quantum computing society? Perhaps, as Khan, says, society need to anticipate these issues, instead of being asleep at the wheel again.

Read the original post:
The risk of giving in to quantum progress - ComputerWeekly.com

IBM’s Goldeneye: Behind the scenes at the world’s largest dilution refrigerator – ZDNet

CONNIE ZHOU

It's fitting that one of the coolest quantum computing projects going has an equally cool name.Goldeneyeis IBM's internal codename for the world's largest dilution refrigerator, which will house a future 1,000,000 qubit quantum processor.

In September 2020, IBM debuted a detailed roadmap about how it will scale its quantum technology in the next three years to reach the true quantum industry inflection point of Quantum Advantage -- the point at which quantum systems will be more powerful than today's conventional computing.

But there's a catch: You can't do anything in quantum without incredibly low temperatures.

To reach this 'moon landing' moment, the IBM team developed the largest dilution refrigerator, which will house a future 1,000,000 qubit system. Work is underway to reach the goal of quantum computer capable of surpassing conventional machines by 2023, and this 10-foot-tall and 6-foot-wide "super-fridge" is a key ingredient, capable of reaching temperatures of 15 millikelvin, which is colder than outer space. The fridge gets so cold it takes between 5 and 14 days to cool down.

I caught up withJerry Chow, Director of Quantum Hardware System Development for IBM, to learn about the Herculean project and to find out what's next for IBM's quantum computing ambitions.

Let's start with the basics: Why is a super-fridge necessary for useful quantum computing and what advances in the last decade or so have aided that effort?

Superconducting qubits need to be cooled down to between 10-15 millikelvin for their quantum behavior to emerge. They need to be kept that cold to ensure that their performance is high. Dilution refrigeration technology, which has been around for a really long time, is an enabling technology specifically for superconducting qubits for quantum computing. Whereas a different type of qubit might require its own unique set of hardware and infrastructure.

Around 2010, cryogen-free dilution refrigerators became en vogue. These didn't require transferring and refilling liquid cryogenic helium every other day to keep these refrigerators cold. In fact, my PhD at Yale was completed entirely at the time when we were still experimenting on what we call "wet" dilution refrigerators. However, around 2010, the whole world started switching over to these reliable cryogen-free "dry" dilution refrigerators which suddenly allowed for experiments with superconducting qubits to be done for a lot longer periods of time with no interruption.

How did the Goldeneye project first took shape? And what were the biggest perceived technical challenges early on?

The very first thought of building something at that scale came from my colleaguePat Gumannwhile brainstorming long-term, 'crazy' ideas in my office in November of 2018. At that time, our team was tasked with deploying our first 53-qubit quantum computer in the IBM Quantum Computation Center in Poughkeepsie, NY, a challenge which pushed a few limits in what we could place into a single cryogenic refrigerator at the time. While working on it, it also really made us start thinking beyond, and almost instantly that we will need much larger cryogenic support system to ever cool down between 1,000 to 1 million qubits. This was simply due to the sheer volume required to host, not only all the qubits, but also all of the auxiliary, cryogenic, microwave electronics cables, filters, attenuators, isolators, amplifiers, etc.

It became very apparent that a new way of thinking in terms of the design would be needed and we started coming up with different form factors for how to effectively construct and cool down a behemoth such as the super-fridge. Some of the challenges we had were purely infrastructural such as how were we going to find a space in the building big enough to start this project and where would we find the capabilities to work with really large pieces of metal.

And as the rubber started to meet the road what have turned out to be the biggest hurdles to creating a useful quantum computer, and what does that say about the trajectory of the technology?

Some of the most challenging hurdles to overcome includes improving the quality of the underlying qubits, which includes improving the underlying coherence times (the amount of time that qubits stay in a superposition state), the achievable two-qubit gate fidelities, and reducing crosstalk between qubits as we scale up.

For that matter, most of these improvements feed into an overall quality measure for the performance of a quantum computer which we have defined called the Quantum Volume. Having a measure such as Quantum Volume allows us to really show progression along a roadmap of improvements, and we have been demonstrating this scaling of Quantum Volume year over year as we make new systems better and better.

The higher the Quantum Volume, the more real-world, complex problems quantum computers can potentially solve. A variety of factors determine Quantum Volume, including the number of qubits, connectivity, and coherence time, plus accounting for gate and measurement errors, device cross talk, and circuit software compiler efficiency.

Where is IBM right now with regards to Goldeneye? What can we expect in the near future?

Our "Goldeneye" super-fridge is very much an ongoing project, which is on target for completion in 2023. It is just one critical part of our long-term roadmap for scaling quantum technology. As we continue to execute on the roadmap we announced in September, we're pleased to share that we achieved aQuantum Volume of 128in November and we're working towards improving the quality of our underlying systems in order to debut our127-qubit IBM Quantum Eagle processorlater this year.

In the near future, we're poised to make exciting developments with our entire technology stack, including software and control systems. At IBM, we're working toward a complete set of broad innovations and breakthroughs.

What will quantum computing mean for the world in the long run? How will be a game changer?

Quantum computing will vastly broaden the types of problems we will address, and the technology offers a new form of computation that we expect to work in a frictionless fashion with today's classical computers. From the chemistry of new materials, and the optimization of everything from vehicle routing to financial portfolios, to improving machine learning, quantum will be an integral part of the future of computing and we're proud to be laying the foundation for a future of discovery.

See the original post:
IBM's Goldeneye: Behind the scenes at the world's largest dilution refrigerator - ZDNet

Caltech and NTT developing the world’s fastest quantum computer – Digital Journal

NTT Research has announced a collaboration with Caltech to develop the worlds fastest Coherent Ising Machine (CIM). This relates to a quantum-oriented computing approach that uses special-purpose processors to solve extremely complex combinatorial optimization problems. CIMs are advanced devices that constitute a promising approach to solving optimization problems by mapping them to ground state searches. The primary application of the computing method is drug discovery. Developing new drugs is of importance, including the current fight against COVID-19. Drug discovery is a commonly cited combinatorial optimization problem. The search for effective drugs involves an enormous number of potential matches between medically appropriate molecules and target proteins that are responsible for a specific disease. Conventional computers are used to replicate chemical interactions in the medical space and other areas of life and chemical sciences. To really move forwards, quantum technology is required to take developments beyond trial and error to rapidly tackle the sheer volume of total possible combinations.Other applications of the technology include:LogisticsOne classic problem is that of the traveling salesman (a common logic problem) identifying the shortest possible route that visits each of n number of cities, while returning to the city of origin. This problem and its variants appear in contemporary form in logistical challenges, such as daily automotive traffic patterns. The advantage of using a quantum information system is speed. Machine LearningA CIM is also a good match for some types of machine learning, including image and speech recognition. Artificial neural networks learn by iteratively processing examples containing known inputs and results. CIMs can speed up the training and improve upon the accuracy of existing neural networks.The development of the new computer system has been pioneered by Kazuhiro Gomi, CEO of NTT Research, and Dr. Yoshihisa Yamamoto, Director of NTT Researchs Physics & Informatics (PHI) Lab, who is overseeing this research. This is a step forwards in CIM optimization problems by uniting perspectives from statistics, computer science, statistical physics and quantum optics.

Read the rest here:
Caltech and NTT developing the world's fastest quantum computer - Digital Journal

University of Glasgow Partners with Oxford Instruments NanoScience on Quantum Computing – HPCwire

Jan. 21, 2021 Today, the University of Glasgow, a pioneering institution in quantum technology development and home of the Quantum Circuits Group, announced its using Oxford Instruments next generation Cryofree refrigerator, Proteox, as part of its research to accelerate the commercialisation of quantum computing in the UK.

Were excited to be using Proteox, the latest in cryogen-free refrigeration technology, and to have the system up and running in our lab, comments Professor Martin Weides, Head of the Quantum Circuits Group. Oxford Instruments is a long-term strategic partner and todays announcement highlights the importance of our close collaboration to the future of quantum computing development. Proteox is designed with quantum scale-up in mind, and through the use of its Secondary Insert technology, were able to easily characterise and develop integrated chips and components for quantum computing applications.

The University of Glasgow, its subsidiary and commercialisation partner, Kelvin Nanotechnology, and Oxford Instruments NanoScience are part of a larger consortium supported by funding from Innovate UK, the UKs innovation agency, granted in April 2020. The consortium partners will boost quantum technology development by the design, manufacture, and test of superconducting quantum devices.

Todays announcement demonstrates the major contribution Oxford Instruments is making towards pioneering quantum technology work in the UK, states Stuart Woods, Managing Director of Oxford Instruments NanoScience. With our 60 years of experience of in-house component production and global service support, we are accelerating the commercialisation of quantum to discover whats next supporting our customers across the world.

Proteox is a next-generation Cryofree system that provides a step change in modularity and adaptability for ultra-low temperature experiments in condensed-matter physics and quantum computing industrialisation. The Proteox platform has been developed to provide a single, interchangeable modular solution that can support multiple users and a variety of set-ups or experiments. It also includes remote management software which is integral to the system design, enabling, for example, the system to be managed from anywhere in the world. To find out more, visit nanoscience.oxinst.com/proteox.

About Oxford Instruments NanoScience

Oxford Instruments NanoScience designs, supplies and supports market-leading research tools that enable quantum technologies, new materials and device development in the physical sciences. Our tools support research down to the atomic scale through creation of high performance, cryogen-free low temperature and magnetic environments, based upon our core technologies in low and ultra-low temperatures, high magnetic fields and system integration, with ever-increasing levels of experimental and measurement readiness.Oxford Instruments NanoScience is a part of the Oxford Instruments plc group.

Glasgows Quantum Circuit Group is found here: https://www.gla.ac.uk/schools/engineering/research/divisions/ene/researchthemes/micronanotechnology/quantumcircuits/

Source: University of Glasgow

More:
University of Glasgow Partners with Oxford Instruments NanoScience on Quantum Computing - HPCwire

The Worldwide Quantum Computing Industry will Exceed $7.1 Billion by 2026 – GlobeNewswire

Dublin, Jan. 19, 2021 (GLOBE NEWSWIRE) -- The "Quantum Computing Market by Technology, Infrastructure, Services, and Industry Verticals 2021 - 2026" report has been added to ResearchAndMarkets.com's offering.

This report assesses the technology, companies/organizations, R&D efforts, and potential solutions facilitated by quantum computing. The report provides global and regional forecasts as well as the outlook for quantum computing impact on infrastructure including hardware, software, applications, and services from 2021 to 2026. This includes the quantum computing market across major industry verticals.

While classical (non-quantum) computers make the modern digital world possible, there are many tasks that cannot be solved using conventional computational methods. This is because of limitations in processing power. For example, fourth-generation computers cannot perform multiple computations at one time with one processor. Physical phenomena at the nanoscale indicate that a quantum computer is capable of computational feats that are orders of magnitude greater than conventional methods.

This is due to the use of something referred to as a quantum bit (qubit), which may exist as a zero or one (as in classical computing) or may exist in two-states simultaneously (0 and 1 at the same time) due to the superposition principle of quantum physics. This enables greater processing power than the normal binary (zero only or one only) representation of data.

Whereas parallel computing is achieved in classical computers via linking processors together, quantum computers may conduct multiple computations with a single processor. This is referred to as quantum parallelism and is a major difference between hyper-fast quantum computers and speed-limited classical computers.

Quantum computing is anticipated to support many new and enhanced capabilities including:

Target Audience:

Select Report Findings:

Report Benefits:

Key Topics Covered:

1.0 Executive Summary

2.0 Introduction

3.0 Technology and Market Analysis3.1 Quantum Computing State of the Industry3.2 Quantum Computing Technology Stack3.3 Quantum Computing and Artificial Intelligence3.4 Quantum Neurons3.5 Quantum Computing and Big Data3.6 Linear Optical Quantum Computing3.7 Quantum Computing Business Model3.8 Quantum Software Platform3.9 Application Areas3.10 Emerging Revenue Sectors3.11 Quantum Computing Investment Analysis3.12 Quantum Computing Initiatives by Country3.12.1 USA3.12.2 Canada3.12.3 Mexico3.12.4 Brazil3.12.5 UK3.12.6 France3.12.7 Russia3.12.8 Germany3.12.9 Netherlands3.12.10 Denmark3.12.11 Sweden3.12.12 Saudi Arabia3.12.13 UAE3.12.14 Qatar3.12.15 Kuwait3.12.16 Israel3.12.17 Australia3.12.18 China3.12.19 Japan3.12.20 India3.12.21 Singapore

4.0 Quantum Computing Drivers and Challenges4.1 Quantum Computing Market Dynamics4.2 Quantum Computing Market Drivers4.2.1 Growing Adoption in Aerospace and Defense Sectors4.2.2 Growing investment of Governments4.2.3 Emergence of Advance Applications4.3 Quantum Computing Market Challenges

5.0 Quantum Computing Use Cases5.1 Quantum Computing in Pharmaceuticals5.2 Applying Quantum Technology to Financial Problems5.3 Accelerate Autonomous Vehicles with Quantum AI5.4 Car Manufacturers using Quantum Computing5.5 Accelerating Advanced Computing for NASA Missions

6.0 Quantum Computing Value Chain Analysis6.1 Quantum Computing Value Chain Structure6.2 Quantum Computing Competitive Analysis6.2.1 Leading Vendor Efforts6.2.2 Start-up Companies6.2.3 Government Initiatives6.2.4 University Initiatives6.2.5 Venture Capital Investments6.3 Large Scale Computing Systems

7.0 Company Analysis7.1 D-Wave Systems Inc.7.1.1 Company Overview:7.1.2 Product Portfolio7.1.3 Recent Development7.2 Google Inc.7.2.1 Company Overview:7.2.2 Product Portfolio7.2.3 Recent Development7.3 Microsoft Corporation7.3.1 Company Overview:7.3.2 Product Portfolio7.3.3 Recent Development7.4 IBM Corporation7.4.1 Company Overview:7.4.2 Product Portfolio7.4.3 Recent Development7.5 Intel Corporation7.5.1 Company Overview7.5.2 Product Portfolio7.5.3 Recent Development7.6 Nokia Corporation7.6.1 Company Overview7.6.2 Product Portfolio7.6.3 Recent Developments7.7 Toshiba Corporation7.7.1 Company Overview7.7.2 Product Portfolio7.7.3 Recent Development7.8 Raytheon Company7.8.1 Company Overview7.8.2 Product Portfolio7.8.3 Recent Development7.9 Other Companies7.9.1 1QB Information Technologies Inc.7.9.1.1 Company Overview7.9.1.2 Recent Development7.9.2 Cambridge Quantum Computing Ltd.7.9.2.1 Company Overview7.9.2.2 Recent Development7.9.3 QC Ware Corp.7.9.3.1 Company Overview7.9.3.2 Recent Development7.9.4 MagiQ Technologies Inc.7.9.4.1 Company Overview7.9.5 Rigetti Computing7.9.5.1 Company Overview7.9.5.2 Recent Development7.9.6 Anyon Systems Inc.7.9.6.1 Company Overview7.9.7 Quantum Circuits Inc.7.9.7.1 Company Overview7.9.7.2 Recent Development7.9.8 Hewlett Packard Enterprise (HPE)7.9.8.1 Company Overview7.9.8.2 Recent Development7.9.9 Fujitsu Ltd.7.9.9.1 Company Overview7.9.9.2 Recent Development7.9.10 NEC Corporation7.9.10.1 Company Overview7.9.10.2 Recent Development7.9.11 SK Telecom7.9.11.1 Company Overview7.9.11.2 Recent Development7.9.12 Lockheed Martin Corporation7.9.12.1 Company Overview7.9.13 NTT Docomo Inc.7.9.13.1 Company Overview7.9.13.2 Recent Development7.9.14 Alibaba Group Holding Limited7.9.14.1 Company Overview7.9.14.2 Recent Development7.9.15 Booz Allen Hamilton Inc.7.9.15.1 Company Overview7.9.16 Airbus Group7.9.16.1 Company Overview7.9.16.2 Recent Development7.9.17 Amgen Inc.7.9.17.1 Company Overview7.9.17.2 Recent Development7.9.18 Biogen Inc.7.9.18.1 Company Overview7.9.18.2 Recent Development7.9.19 BT Group7.9.19.1 Company Overview7.9.19.2 Recent Development7.9.20 Mitsubishi Electric Corp.7.9.20.1 Company Overview7.9.21 Volkswagen AG7.9.21.1 Company Overview7.9.21.2 Recent Development7.9.22 KPN7.9.22.1 Recent Development7.10 Ecosystem Contributors7.10.1 Agilent Technologies7.10.2 Artiste-qb.net7.10.3 Avago Technologies7.10.4 Ciena Corporation7.10.5 Eagle Power Technologies Inc7.10.6 Emcore Corporation7.10.7 Enablence Technologies7.10.8 Entanglement Partners7.10.9 Fathom Computing7.10.10 Alpine Quantum Technologies GmbH7.10.11 Atom Computing7.10.12 Black Brane Systems7.10.13 Delft Circuits7.10.14 EeroQ7.10.15 Everettian Technologies7.10.16 EvolutionQ7.10.17 H-Bar Consultants7.10.18 Horizon Quantum Computing7.10.19 ID Quantique (IDQ)7.10.20 InfiniQuant7.10.21 IonQ7.10.22 ISARA7.10.23 KETS Quantum Security7.10.24 Magiq7.10.25 MDR Corporation7.10.26 Nordic Quantum Computing Group (NQCG)7.10.27 Oxford Quantum Circuits7.10.28 Post-Quantum (PQ Solutions)7.10.29 ProteinQure7.10.30 PsiQuantum7.10.31 Q&I7.10.32 Qasky7.10.33 QbitLogic7.10.34 Q-Ctrl7.10.35 Qilimanjaro Quantum Hub7.10.36 Qindom7.10.37 Qnami7.10.38 QSpice Labs7.10.39 Qu & Co7.10.40 Quandela7.10.41 Quantika7.10.42 Quantum Benchmark Inc.7.10.43 Quantum Circuits Inc. (QCI)7.10.44 Quantum Factory GmbH7.10.45 QuantumCTek7.10.46 Quantum Motion Technologies7.10.47 QuantumX7.10.48 Qubitekk7.10.49 Qubitera LLC7.10.50 Quintessence Labs7.10.51 Qulab7.10.52 Qunnect7.10.53 QuNu Labs7.10.54 River Lane Research (RLR)7.10.55 SeeQC7.10.56 Silicon Quantum Computing7.10.57 Sparrow Quantum7.10.58 Strangeworks7.10.59 Tokyo Quantum Computing (TQC)7.10.60 TundraSystems Global Ltd.7.10.61 Turing7.10.62 Xanadu7.10.63 Zapata Computing7.10.64 Accenture7.10.65 Atos Quantum7.10.66 Baidu7.10.67 Northrop Grumman7.10.68 Quantum Computing Inc.7.10.69 Keysight Technologies7.10.70 Nano-Meta Technologies7.10.71 Optalysys Ltd.

8.0 Quantum Computing Market Analysis and Forecasts 2021 - 20268.1.1 Quantum Computing Market by Infrastructure8.1.1.1 Quantum Computing Market by Hardware Type8.1.1.2 Quantum Computing Market by Application Software Type8.1.1.3 Quantum Computing Market by Service Type8.1.1.3.1 Quantum Computing Market by Professional Service Type8.1.2 Quantum Computing Market by Technology Segment8.1.3 Quantum Computing Market by Industry Vertical8.1.4 Quantum Computing Market by Region8.1.4.1 North America Quantum Computing Market by Infrastructure, Technology, Industry Vertical, and Country8.1.4.2 European Quantum Computing Market by Infrastructure, Technology, and Industry Vertical8.1.4.3 Asia-Pacific Quantum Computing Market by Infrastructure, Technology, and Industry Vertical8.1.4.4 Middle East & Africa Quantum Computing Market by Infrastructure, Technology, and Industry Vertical8.1.4.5 Latin America Quantum Computing Market by Infrastructure, Technology, and Industry Vertical

9.0 Conclusions and Recommendations

10.0 Appendix: Quantum Computing and Classical HPC10.1 Next Generation Computing10.2 Quantum Computing vs. Classical High-Performance Computing10.3 Artificial Intelligence in High Performance Computing10.4 Quantum Technology Market in Exascale Computing

For more information about this report visit https://www.researchandmarkets.com/r/omefq7

See the rest here:
The Worldwide Quantum Computing Industry will Exceed $7.1 Billion by 2026 - GlobeNewswire