Archive for the ‘Quantum Computer’ Category

Can a Computer Devise a Theory of Everything? – The New York Times

By the times that A.I. comes back and tells you that, then we have reached artificial general intelligence, and you should be very scared or very excited, depending on your point of view, Dr. Tegmark said. The reason Im working on this, honestly, is because what I find most menacing is, if we build super-powerful A.I. and have no clue how it works right?

Dr. Thaler, who directs the new institute at M.I.T., said he was once a skeptic about artificial intelligence but now was an evangelist. He realized that as a physicist he could encode some of his knowledge into the machine, which would then give answers that he could interpret more easily.

That becomes a dialogue between human and machine in a way that becomes more exciting, he said, rather than just having a black box you dont understand making decisions for you.

He added, I dont particularly like calling these techniques artificial intelligence, since that language masks the fact that many A.I. techniques have rigorous underpinnings in mathematics, statistics and computer science.

Yes, he noted, the machine can find much better solutions than he can despite all of his training: But ultimately I still get to decide what concrete goals are worth accomplishing, and I can aim at ever more ambitious targets knowing that, if I can rigorously define my goals in a language the computer understands, then A.I. can deliver powerful solutions.

Recently, Dr. Thaler and his colleagues fed their neural network a trove of data from the Large Hadron Collider, which smashes together protons in search of new particles and forces. Protons, the building blocks of atomic matter, are themselves bags of smaller entities called quarks and gluons. When protons collide, these smaller particles squirt out in jets, along with whatever other exotic particles have coalesced out of the energy of the collision. To better understand this process, he and his team asked the system to distinguish between the quarks and the gluons in the collider data.

We said, Im not going to tell you anything about quantum field theory; Im not going to tell you what a quark or gluon is at a fundamental level, he said. Im just going to say, Heres a mess of data, please separate it into basically two categories. And it can do it.

See the rest here:
Can a Computer Devise a Theory of Everything? - The New York Times

Is the blockchain vulnerable to hacking by quantum computers? – Moneyweb.co.za

Theres a lingering fear among crypto investors that their bitcoin might get swooped by a hacker.

Thats not very likely, but its not impossible either, particularly once quantum computing gets into the wrong hands. Last year Googles quantum computer called Sycamore was given a puzzle that would take even the most powerful supercomputers 10 000 years to solve and completed it in just 200 seconds, according to Nature magazine.

That kind of processing power unleashed on the bitcoin blockchain which is a heavily encrypted ledger of all bitcoin transactions is a cause for concern.

Read:

The encryption technology used by the bitcoin blockchain has proven itself robust enough to withstand any and all attacks. Thats because of its brilliant design, and ongoing improvements by an ever-growing community of open-source cryptographers and developers.

A report by research group Gartner (Hype Cycle for Blockchain Technologies, 2020) suggests blockchain researchers are already anticipating possible attacks by quantum computers that are perhaps five to 10 years away from commercial availability. Its a subject called Postquantum blockchain which is a form of blockchain technology using quantum-resistant cryptographic algorithms that can resist attack by future quantum computers.

The good news is that quantum-resistant algorithms are likely to remain several steps ahead of the hackers, but its an issue that is drawing considerable attention in the financial, security and blockchain communities.

Postquantum cryptography is not a threat just yet, but crypto exchanges are going to have to deploy quantum-resistant technologies in the next few years, before quantum computers become generally available.

Phishing is probably a bigger threat

In truth, youre far more likely to be hit by a phishing scam, where identity thieves use emails, text messages and fake websites to get you to divulge sensitive personal information such as bank account or crypto exchange passwords.

As a user, you should be using LastPass or similar software to generate complex passwords, along with two-factor authentication (requiring the input of a time-sensitive code before you can access your crypto exchange account).Most good exchanges are enabled for this level of security.

There are many sad stories of bitcoin theft, but these are usually as a result of weak security on the part of the bitcoin holder, much like leaving your wallet on the front seat of your car while you pop into the shop for a minute.

Like all tech breakthroughs, quantum computing can be used for good and bad.

On the plus side, it will vastly speed drug discovery, molecular modelling and code breaking. It will also be a gift to hackers and online thieves, which is why financial services companies are going to have to invest in defensive technologies to keep customer information and assets safe.

Most crypto exchanges invest substantial amounts in security. The vast majority of crypto assets (about 97%) are stored in encrypted, geographically-separated, offline storage. These cannot be hacked.

The risk emerges when bitcoin are moved from offline (or cold storage) to online, such as when a client is about to transact.

But even here, the level of security is usually robust. A further level of protection is the insurance of all bitcoin that are stored in online systems. They also have systems in place to prevent any employee from making off with clients assets, requiring multiple keys before a bitcoin transaction is authorised.

There have been hacks on crypto exchanges in the past (though not on the blockchain itself), and millions of dollars in crypto assets stolen. In more recent years, this has become less common as exchanges moved to beef up their security systems.

In 2014 Mt.Gox, at the time responsible for about 70% of all bitcoin transactions in the world, suffered an attack when roughly 800000 bitcoin, valued at $460 million, were stolen. In 2018, Japan-based crypto exchange Coincheck was hit with a $534 million fraud impacting 260000 investors.

As the value of bitcoin and other crypto assets increases, the incentive for hackers rises proportionately, which is why problems such as quantum-enabled thievery are already being addressed.

Read:Moneyweb Crypto glossary

FREE WEBINAR:New Cryptocurrency Regulations: What does this mean for the crypto market?

See the article here:
Is the blockchain vulnerable to hacking by quantum computers? - Moneyweb.co.za

Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications – SciTechDaily

In a new realm of materials, PhD student Thanh Nguyen uses neutrons to hunt for exotic properties that could power real-world applications.

Thanh Nguyen is in the habit of breaking down barriers. Take languages, for instance: Nguyen, a third-year doctoral candidate in nuclear science and engineering (NSE), wanted to connect with other people and cultures for his work and social life, he says, so he learned Vietnamese, French, German, and Russian, and is now taking an MIT course in Mandarin. But this drive to push past obstacles really comes to the fore in his research, where Nguyen is trying to crack the secrets of a new and burgeoning branch of physics.

My dissertation focuses on neutron scattering on topological semimetals, which were only experimentally discovered in 2015, he says. They have very special properties, but because they are so novel, theres a lot thats unknown, and neutrons offer a unique perspective to probe their properties at a new level of clarity.

Topological materials dont fit neatly into conventional categories of substances found in everyday life. They were first materialized in the 1980s, but only became practical in the mid-2000s with deepened understanding of topology, which concerns itself with geometric objects whose properties remain the same even when the objects undergo extreme deformation. Researchers experimentally discovered topological materials even more recently, using the tools of quantum physics.

Within this domain, topological semimetals, which share qualities of both metals and semiconductors, are of special interest to Nguyen.They offer high levels of thermal and electric conductivity, and inherent robustness, which makes them very promising for applications in microelectronics, energy conversions, and quantum computing, he says.

Intrigued by the possibilities that might emerge from such unconventional physics, Nguyen is pursuing two related but distinct areas of research: On the one hand, Im trying to identify and then synthesize new, robust topological semimetals, and on the other, I want to detect fundamental new physics with neutrons and further design new devices.

My goal is to create programmable artificial structured topological materials, which can directly be applied as a quantum computer, says Thanh Nguyen. Credit: Gretchen Ertl

Reaching these goals over the next few years might seem a tall order. But at MIT, Nguyen has seized every opportunity to master the specialized techniques required for conducting large-scale experiments with topological materials, and getting results. Guided by his advisor,Mingda Li, the Norman C Rasmussen Assistant Professor and director of theQuantum Matter Groupwithin NSE, Nguyen was able to dive into significant research even before he set foot on campus.

The summer, before I joined the group, Mingda sent me on a trip to Argonne National Laboratory for a very fun experiment that used synchrotron X-ray scattering to characterize topological materials, recalls Nguyen. Learning the techniques got me fascinated in the field, and I started to see my future.

During his first two years of graduate school, he participated in four studies, serving as a lead author in three journal papers. In one notable project,described earlier this yearinPhysical Review Letters, Nguyen and fellow Quantum Matter Group researchers demonstrated, through experiments conducted at three national laboratories, unexpected phenomena involving the way electrons move through a topological semimetal, tantalum phosphide (TaP).

These materials inherently withstand perturbations such as heat and disorders, and can conduct electricity with a level of robustness, says Nguyen. With robust properties like this, certain materials can conductivity electricity better than best metals, and in some circumstances superconductors which is an improvement over current generation materials.

This discovery opens the door to topological quantum computing. Current quantum computing systems, where the elemental units of calculation are qubits that perform superfast calculations, require superconducting materials that only function in extremely cold conditions. Fluctuations in heat can throw one of these systems out of whack.

The properties inherent to materials such as TaP could form the basis of future qubits, says Nguyen. He envisions synthesizing TaP and other topological semimetals a process involving the delicate cultivation of these crystalline structures and then characterizing their structural and excitational properties with the help of neutron and X-ray beam technology, which probe these materials at the atomic level. This would enable him to identify and deploy the right materials for specific applications.

My goal is to create programmable artificial structured topological materials, which can directly be applied as a quantum computer, says Nguyen. With infinitely better heat management, these quantum computing systems and devices could prove to be incredibly energy efficient.

Energy efficiency and its benefits have long concerned Nguyen. A native of Montreal, Quebec, with an aptitude for math and physics and a concern for climate change, he devoted his final year of high school to environmental studies. I worked on a Montreal initiative to reduce heat islands in the city by creating more urban parks, he says. Climate change mattered to me, and I wanted to make an impact.

At McGill University, he majored in physics. I became fascinated by problems in the field, but I also felt I could eventually apply what I learned to fulfill my goals of protecting the environment, he says.

In both classes and research, Nguyen immersed himself in different domains of physics. He worked for two years in a high-energy physics lab making detectors for neutrinos, part of a much larger collaboration seeking to verify the Standard Model. In the fall of his senior year at McGill, Nguyens interest gravitated toward condensed matter studies. I really enjoyed the interplay between physics and chemistry in this area, and especially liked exploring questions in superconductivity, which seemed to have many important applications, he says. That spring, seeking to add useful skills to his research repertoire, he worked at Ontarios Chalk River Laboratories, where he learned to characterize materials using neutron spectroscopes and other tools.

These academic and practical experiences served to propel Nguyen toward his current course of graduate study. Mingda Li proposed an interesting research plan, and although I didnt know much about topological materials, I knew they had recently been discovered, and I was excited to enter the field, he says.

Nguyen has mapped out the remaining years of his doctoral program, and they will prove demanding. Topological semimetals are difficult to work with, he says. We dont yet know the optimal conditions for synthesizing them, and we need to make these crystals, which are micrometers in scale, in quantities large enough to permit testing.

With the right materials in hand, he hopes to develop a qubit structure that isnt so vulnerable to perturbations, quickly advancing the field of quantum computing so that calculations that now take years might require just minutes or seconds, he says. Vastly higher computational speeds could have enormous impacts on problems like climate, or health, or finance that have important ramifications for society. If his research on topological materials benefits the planet or improves how people live, says Nguyen, I would be totally happy.

Read more from the original source:
Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications - SciTechDaily

Quantum computing now is a bit like SQL was in the late 80s: Wild and wooly and full of promise – ZDNet

Quantum computing is bright and shiny, with demonstrations by Google suggesting a kind of transcendent ability to scale beyond the heights of known problems.

But there's a real bummer in store for anyone with their head in the clouds: All that glitters is not gold, and there's a lot of hard work to be done on the way to someday computing NP-hard problems.

"ETL, if you get that wrong in this flow-based programming, if you get the data frame wrong, it's garbage in, garbage out," according to Christopher Savoie, who is the CEO and a co-founder of a three-year-old startup, Zapata Computing of Boston, Mass.

"There's this naive idea you're going to show up with this beautiful quantum computer, and just drop it in your data center, and everything is going to be solved it's not going to work that way," said Savoie, in a video interview with ZDNet. "You really have to solve these basic problems."

"There's this naive idea you're going to show up with this beautiful quantum computer, and just drop it in your data center, and everything is going to be solved it's not going to work that way," said Savoie, in a video interview with ZDNet. "You really have to solve these basic problems."

Zapata sells a programming tool for quantum computing, called Orquestra. It can let developers invent algorithms to be run on real quantum hardware, such as Honeywell's trapped-ion computer.

But most of the work of quantum today is not writing pretty algorithms, it's just making sure data is not junk.

"Ninety-five percent of the problem is data cleaning," Savoie told ZDNet. "There wasn't any great toolset out there, so that's why we created Orquestra to do this."

The company on Thursday announced it has received a Series B round of investment totaling $38 million from large investors that include Honeywell's venture capital outfit and returning Series A investors Comcast Ventures, Pitango, and Prelude Ventures, among others. The company has now raised $64.4 million.

Also:Honeywell introduces quantum computing as a service with subscription offering

Zapata was spun out of Harvard University in 2017 by scholars including Aln Aspuru-Guzik, who has done fundamental work on quantum. But a lot of what is coming up are the mundane matters of data prep and other gotchas that can be a nightmare in a bold new world of only partially-understood hardware.

Things such as extract, transform, load, or ETL, which become maddening when prepping a quantum workload.

"We had a customer who thought they had a compute problem because they had a job that was taking a long time; it turned out, when we dug in, just parallelizing the workflow, the ETL, gave them a compute advantage," recalled Savoie.

Such pitfalls, said Savoie, are thingsthat companies don't know are an issue until they get ready to spend valuable time on a quantum computer and code doesn't run as expected.

"That's why we think it's critical for companies to start now," he said, even though today's noisy intermediate-scale quantum, or NISQ, machines have only a handful of qubits.

"You have to solve all these basic problems we really haven't even solved yet in classical computing," said Savoie.

The present moment in time in the young field of quantum sounds a bit like the early days of microcomputer-based relational databases. And, in fact, Savoie likes to make an analogy to the era of the 1980s and 1990s, when Oracle database was taking over workloads from IBM's DB/2.

Also:What the Google vs. IBM debate over quantum supremacy means

"Oracle is a really good analogy, he said. "Recall when SQL wasn't even a thing, and databases had to be turned on a per-on-premises, as-a-solution basis; how do I use a database versus storage, and there weren't a lot of tools for those things, and every installment was an engagement, really," recalled Savoie.

"There are a lot of close analogies to that" with today's quantum, said Savoie. "It's enterprise, it's tough problems, it's a lot of big data, it's a lot of big compute problems, and we are the software company sitting in the middle of all that with a lot of tools that aren't there yet."

Mind you, Savoie is a big believer in quantum's potential, despite pointing out all the challenges. He has seen how technologies can get stymied, but also how they ultimately triumph. He helped found startup Dejima, one of the companies that became a component of Apple's Siri voice assistant, in 1998. Dejima didn't produce an AI wave, it sold out to database giant Sybase.

"We invented this natural language understanding engine, but we didn't have the great SpeechWorks engine, we didn't have 3G, never mind 4G cell phones or OLED displays," he recalled. "It took ten years from 1998 till it was a product, till it was Siri, so I've seen this movie before I've been in that movie."

But the technology of NLP did survive and is now thriving. Similarly, the basic science of quantum, as with the basic science of NLP, is real, is validated. "Somebody is going to be the iPhone" of quantum, he said, although along the way there may be a couple Apple Newtons, too, he quipped.

Even an Apple Newton of quantum will be a breakthrough. "It will be solving real problems," he said.

Also: All that glitters is not quantum AI

In the meantime, handling the complexity that's cropping up now, with things like ETL, suggests there's a role for a young company that can be for quantum what Oracle was for structured query language.

"You build that out, and you have best practices, and you can become a great company, and that's what we aspire to," he said.

Zapata has fifty-eight employees and has had contract revenue since its first year of operations, and has doubled each year, said Savoie.

Read more:
Quantum computing now is a bit like SQL was in the late 80s: Wild and wooly and full of promise - ZDNet

Is Now the Time to Start Protecting Government Data from Quantum Hacking? – Nextgov

My previous column about the possibility of pairing artificial intelligence with quantum computing to supercharge both technologies generated a storm of feedback via Twitter and email. Quantum computing is a science that is still somewhat misunderstood, even by scientists working on it, but might one day be extremely powerful. And artificial intelligence has some scary undertones with quite a few trust issues. So I understand the reluctance that people have when considering this marriage of technologies.

Unfortunately, we dont really get a say in this. The avalanche has already started, so its too late for all of us pebbles to vote against it. All we can do now is deal with the practical ramifications of these recent developments. The most critical right now is protecting government encryption from the possibility of quantum hacking.

Two years ago I warned that government data would soon be vulnerable to quantum hacking, whereby a quantum machine could easily shred the current AES encryption used to protect our most sensitive information. Government agencies like NIST have been working for years on developing quantum-resistant encryption schemes. But adding AI to a quantum computer might be the tipping point needed to give quantum the edge, while most of the quantum-resistant encryption protections are still being slowly developed. At least, that is what I thought.

One of the people who contacted me after my last article was Andrew Cheung, the CEO of 01 Communique Laboratory and IronCAP. They have a product available right now which can add quantum-resistant encryption to any email. Called IronCAP X, its available for free for individual users, so anyone can start protecting their email from the threat of quantum hacking right away. In addition to downloading the program to test, I spent about an hour interviewing Cheung about how quantum-resistant encryption works, and how agencies can keep their data protection one step ahead of some of the very same quantum computers they are helping to develop.

For Cheung, the road to quantum-resistant encryption began over 10 years ago, long before anyone was seriously engineering a quantum computer. It almost felt like we were developing a bulletproof vest before anyone had created a gun, Cheung said.

But the science of quantum-resistant encryption has actually been around for over 40 years, Cheung said. It was just never specifically called that. People would ask how we could develop encryption that would survive hacking by a really fast computer, he said. At first, nobody said the word quantum, but that is what we were ultimately working against.

According to Cheung, the key to creating quantum-resistant encryption is to get away from the core strength of computers in general, which is mathematics. He explained that RSA encryption used by the government today is fundamentally based on prime number factorization, where if you multiply two prime numbers together, the result is a number that can only be broken down into those primes. Breaking encryption involves trying to find those primes by trial and error.

So if you have a number like 21, then almost anyone can use factorization to quickly break it down and find its prime numbers, which are three and seven. If you have a number like 221, then it takes a little bit longer for a human to come up with 13 and 17 as its primes, though a computer can still do that almost instantaneously. But if you have something like a 500 digit number, then it would take a supercomputer more than a century to find its primes and break the related encryption. The fear is that quantum computers, because of the strange way they operate, could one day do that a lot more quickly.

To make it more difficult for quantum machines, or any other kind of fast computer, Cheung and his company developed an encryption method based on binary Goppa code. The code was named for the renowned Russian mathematician who invented it, Valerii Denisovich Goppa, and was originally intended to be used as an error-correcting code to improve the reliability of information being transmitted over noisy channels. The IronCAP program intentionally introduces errors into the information its protecting, and then authorized users can employ a special algorithm to decrypt it, but only if they have the private key so that the numerous errors can be removed and corrected.

What makes encryption based on binary Goppa code so powerful against quantum hacking is that you cant use math to guess at where or how the errors have been induced into the protected information. Unlike encryption based on prime number factorization, there isnt a discernible pattern, and theres no way to brute force guess at how to remove the errors. According to Cheung, a quantum machine, or any other fast system like a traditional supercomputer, cant be programmed to break the encryption because there is no system for it to use to begin its guesswork.

A negative aspect to binary Goppa code encryption, and also one of the reasons why Cheung says the protection method is not more popular today, is the size of the encryption key. Whether you are encrypting a single character or a terabyte of information, the key size is going to be about 250 kilobytes, which is huge compared with the typical 4 kilobyte key size for AES encryption. Even ten years ago, that might have posed a problem for many computers and communication methods, though it seems tiny compared with file sizes today. Still, its one of the main reasons why AES won out as the standard encryption format, Cheung says.

I downloaded the free IronCAP X application and easily integrated it into Microsoft Outlook. Using the application was extremely easy, and the encryption process itself when employing it to protect an email is almost instantaneous, even utilizing the limited power of an average desktop. And while I dont have access to a quantum computer to test its resilience against quantum hacking, I did try to extract the information using traditional methods. I can confirm that the data is just unreadable gibberish with no discernable pattern to unauthorized users.

Cheung says that binary Goppa code encryption that can resist quantum hacking can be deployed right now on the same servers and infrastructure that agencies are already using. It would just be a matter of switching things over to the new method. With quantum computers evolving and improving so rapidly these days, Cheung believes that there is little time to waste.

Yes, making the switch in encryption methods will be a little bit of a chore, he said. But with new developments in quantum computing coming every day, the question is whether you want to maybe deploy quantum-resistant encryption two years too early, or risk installing it two years too late.

John Breeden II is an award-winning journalist and reviewer with over 20 years of experience covering technology. He is the CEO of the Tech Writers Bureau, a group that creates technological thought leadership content for organizations of all sizes. Twitter: @LabGuys

See the article here:
Is Now the Time to Start Protecting Government Data from Quantum Hacking? - Nextgov