Archive for the ‘Quantum Computer’ Category

Safe Quantum Consulting Poised to Speed Adoption of Quantum-Based Encryption Solutions – PR Web

John Prisco, CEO, Safe Quantum Inc.

BETHESDA, Md. (PRWEB) November 10, 2020

Companies facing security risks have never had more to lose, and quantum computing could dramatically alter the security field, according to John J. Prisco, founder of Safe Quantum Inc., a new consultancy that works with corporate IT security teams to design, develop and deploy quantum-safe technologies that will protect their most critical data and intellectual property.

Quantum computing is no longer just theoretical its here, and any corporation that relies on valued information is in the crosshairs for a quantum attack, said Prisco, who has specialized in security and telecommunications networks over the span of his more than 30-year career.

Quantum computers behave differently from traditional computers, which rely on serial processing of 1s and 0s. Quantum computers use the physics of entanglement and superposition to create seemingly unbreakable cryptographic chains. This means they can produce parallel data processing at speeds that are incomparable they can solve a computation in minutes that would take a conventional computer thousands of years.

Prisco was most recently president and CEO at Quantum Xchange, Inc., a quantum technology startup focused on the future of secure key exchange and encryption.

The first and biggest threat from quantum computers is security, Prisco said. Quantum Keys (QKD), quantum-safe math algorithms (PQC) and quantum random numbers (QRNG) provide a menu of encryption approaches that create a defense-in-depth strategy for securing critical data transmissions. This means that companies dont have to execute capital-intensive rip and replace security projects to get the benefits of quantum-safe solutions. We are showing them how, and we are emphasizing that they need to get started now.

QKD is a method of secure communication over physical networks that enables two parties to create a shared but randomly generated secret key. This key is used to encrypt and de-crypt messages or files any kind of data transfer. But the real secret is that QKD can detect a third-party eavesdropping on the connection, trying to gain information about the encryption key. Using inherent quantum mechanics and superposition, QKD ensures the key is provably random, and therefore unbreakable. To put this in context, traditional public-key cryptography uses mathematical algorithms that can be determined and, eventually, broken.

John has a facility with scientific thinking rarely encountered among business people, said Dr. Whitfield Diffie, Turing Laureate and co-inventor of public-key cryptography.

Earlier in his career, John led Triumfant, the first cybersecurity company to perfect anomaly-detection techniques to identify and remediate advanced threats in computer memory systems. He has delivered successful exits for investors at Triumfant, GeoVantage and Ridgeway Systems, among others.

He began his career in telecommunication, first by founding Penn Access, a competitive local access carrier in Pittsburgh, and later by leading 2nd Century Communications, the nations first packet-based competitive local exchange carrier, and eLink Communications, a building local exchange carrier in New York City.

Prisco earned a master of science degree in quantum mechanics from the Massachusetts Institute of Technology after a bachelors of science degree in electrical and electronics engineering from Columbia University.

About Safe Quantum Inc.For more information, meet John J. Prisco.

Share article on social media or email:

See the original post here:
Safe Quantum Consulting Poised to Speed Adoption of Quantum-Based Encryption Solutions - PR Web

Quantum Computing in the CloudCan It Live Up to the Hype? – Electronic Design

What youll learn:

Quantum computing has earned its place on the Gartner hype cycle. Pundits have claimed that it will take over and change everything forever. The reality will likely be somewhat less dramatic, although its fair to say that quantum computers could spell the end for conventional cryptography. Clearly, this has implications for technologies like blockchain, which are slated to support financial systems of the future.

While the Bitcoin system, for example, is calculated to keep classical mining computers busy until 2140, brute-force decryption using a quantum computer could theoretically mine every token almost instantaneously. More powerful digital ledger technologies based on quantum cryptography could level the playing field.

All of this presupposes that quantum computing will become usable and affordable on a widespread scale. As things stand, this certainly seems achievable. Serious computing players, including IBM, Honeywell, Google, and Microsoft, as well as newer specialist startups, all have active programs that are putting quantum computing in the cloud right now and inviting engagement from the wider computing community. Introduction packs and development kits are available to help new users get started.

Democratizing Access

These are important moves that will almost certainly drive further advancement as users come up with more diverse and demanding workloads and figure out ways of handling them using quantum technology. Equally important is the anticipated democratizing effect of widespread cloud access, which should bring more people from a wider variety of backgrounds into contact with quantum to understand it, use it, and influence its ongoing development.

Although its here, quantum computing remains at a very experimental stage. In the future, commercial cloud services could provide affordable access in the same way that scientific or banking organizations can today rent cloud AI applications to do complex workloads that are billed according to the number of computer cycles used.

Hospitals, for example, are taking advantage of genome sequencing apps hosted on AI accelerators in hyperscale data centers to identify genetic disorders in newborn babies. The process costs just a few dollars and the results are back within minutes, enabling timely and potentially life-saving intervention by clinicians.

Quantum computing as a service could further transform healthcare as well as deeply affect many other fields such as materials science. Simulating a caffeine molecule, for example, is incredibly difficult to do with a classical computer, demanding the equivalent of over 100 years of processing time. A quantum computer can complete the task in seconds. Other applications that could benefit include climate analysis, transportation planning, bioinformatics, financial services, encryption, and codebreaking.

A Real Technology Roadmap

For all its power, quantum computing isnt here to kill off classical computing or turn the entire world upside down. Because quantum bits (qubits) can be in both states, 0 and 1, unlike conventional binary bits that are in one state or another, they can store exponentially more information. However, their state when measured is determined by probability, so quantum is only suited to certain types of algorithms. Others can be handled better by classical computers.

In addition, building and running a quantum computer is incredibly difficult and complex. On top of that, the challenges intensify as we try to increase the number of qubits in the system. As with any computer, more bits corresponds to more processing power, so increasing the number of bits is a key objective for quantum-computer architects.

Keeping the system stable, with a low error rate, for longer periods is another objective. One way to achieve this is by cryogenically cooling the equipment to near absolute zero to eliminate thermal noise. Furthermore, extremely pure and clean RF sources are needed. Im excited that, at Rohde & Schwarz, we are working with our academic partners to apply our ultra-low-noise R&S SGS100A RF sources (Fig. 1) to help increase qubit count and stability.

1. Extremely pure and clean RF sources like the R&S SGS100A are needed in quantum-computing applications.

The RF source is one of the most important building blocks as it determines the amount of errors that must be corrected in the process of reading out the quantum-computation results. A cleaner RF signal increases quantum-system stability, reducing errors due to quantum decoherence that would result in information loss.

Besides the low phase and amplitude noise requirements, multichannel solutions are essential to scale up the quantum-computing system. Moreover, as we start to consider scalability, a small form factor of the signal sources becomes even more relevant. Were combining our RF expertise with the software and system know-how of our partners in pursuit of a complete solution.

Equipment Needs

In addition, scientists are constantly looking for new material to be applied in quantum-computing chips and need equipment to help them accurately determine the exact properties. Then, once the new quantum chip is manufactured, its resonance frequencies must be measured to ensure that no undesired resonances exist. Rohde & Schwarz has developed high-performance vector network analyzers (Fig. 2) for both tasks and can assist in the debugging of the quantum-computing system itself.

2. VNAs such as the R&S ZNA help determine properties of material used in quantum computing.

Our partners are relying on us to provide various other test-and-measurement solutions to help them increase the performance and capabilities of quantum computers. The IQ mixing is a crucial part of a quantum computer, for example, and our spectrum analyzers help to characterize and calibrate the IQ mixers and suppress undesired sidebands. Moreover, R&S high-speed oscilloscopes (Fig. 3) help enable precise temporal synchronization of signals in the time domain, which is needed to set up and debug quantum-computing systems.

3. High-speed oscilloscopes, for example, the R&S RTP, can be used to set up and debug quantum-computing systems.

As we work with our partners in the quantum world to improve our products for a better solution fit, at the same time were learning how to apply that knowledge to other products in our portfolio. In turn, this helps to deliver even better performing solutions.

While cloud access will enable more companies and research institutes to take part in the quantum revolution, bringing this technology into the everyday requires a lot more work on user friendliness. That involves moving away from the temperature restrictions, stabilizing quantum computers with a high number of qubits, and all for a competitive price.

Already, however, we can see that quantum has the potential to profoundly change everything it touches. No hype is needed.

Sebastian Richter is Vice President of Market Segment ICR (Industry, Components, Research & Universities) at Rohde & Schwarz.

More here:
Quantum Computing in the CloudCan It Live Up to the Hype? - Electronic Design

Supply Chain: The Quantum Computing Conundrum | Logistics – Supply Chain Digital – The Procurement & Supply Chain Platform

From artificial intelligence to IoT, each technology trend is driven by finding solutions to a problem, some more successfully than others. Right now, the worlds technology community is focused on harnessing the exponential opportunities promised by quantum computing. While it may be some time before we see the true benefits of this emerging technology, and while nothing is certain, the possibilities are great.

What is Quantum Computing?

Capable of solving problems up to 100 million times faster than traditional computers, quantum computing has the potential to comprehensively speed up processes on a monumental scale.

Quantum computers cost millions of dollars to produce, so it perhaps goes without saying that these computers are not yet ready for mass production and rollout. However, their powerful potential to transform real-world supply chain problems should not (and cannot) be ignored. Quantum bits (qubits) can occupy more than one state at the same time (unlike their binary counterparts), embracing nuance and complexity. These particles are interdependent on each other and analogous to the variables of a complex supply chain. Qubits can be linked to other qubits, a process known as entanglement. This is a key hallmark that separates quantum from classical computing.

It is possible to adjust an interaction between these qubits so that they can sense each other. The system then naturally tries to arrange itself in such a way that it consumes as little energy as possible says Christoph Becher, a Professor in Experimental Physics at Saarland University.

Right now, tech giants such as Microsoft, IBM and Intel continue to lead the charge when it comes to the development of quantum computers. While continuous improvement will still be required in the years to come, many tech companies are already offering access to quantum computing features.

According to Forbes contributor Paul Smith-Goodson, IBM is committed to providing clients with quantum computing breakthroughs capable of solving todays impossible problems. Jay Gambetta, Vice President, IBM Quantum, said: With advancements across software and hardware, IBMs full-stack approach delivers the most powerful quantum systems in the industry to our users.

This is good news for multiple industries but in particular those areas of the supply chain where problems around efficiency occur.

Preventing Failure of Supply Chain Optimisation Engines

Current optimisation systems used in inventory allocation and order promising fail to meet the expectations of supply chain planners for a few reasons. Sanjeev Trehan, a member of the Enterprise Transformation Group at TATA Consultancy Services, highlighted two of the key reasons for this in a discussion around digital supply chain disruption:

Inadequate system performance capabilities lie at the heart of both planning problems. By speeding up these processes on an exponential scale, these problems are almost completely eradicated, and the process is made more efficient.

Practical Data and Inventory Applications

As manufacturers incorporate more IoT sensors into their daily operations, they harvest vast amounts of enterprise data. Quantum computing can handle these complex variables within a decision-making model with a high degree of excellence. Harmonising various types of data from different sources makes it especially useful for optimising resource management and logistics within the supply chain.

Quantum computing could be applied to improve dynamic inventory allocation, as well as helping manufacturers govern their energy distribution, water usage, and network design. The precision of this technology allows for a very detailed account of the energy used on the production floor in real-time, for example. Microsoft has partnered with Dubais Electricity and Water Authority in a real-life example of using quantum for grid and utility management.

Logistics

Quantum computing holds huge potential for the logistics area of the supply chain, says Shiraz Sidat, Operations Manager of Speedel, a Leicestershire based B2B courier firm that works in the supply chain of a number of aerospace and manufacturing companies.

Quantum offers real-world solutions in areas such as scheduling, planning, routing and traffic simulations. There are huge opportunities to optimise energy usage, create more sustainable travel routes and make more informed financially-savvy decisions. The sheer scale of speed-up on offer here could potentially increase sustainability while saving time and money he adds.

TATA Consultancy Services provide a very good example to support Shirazs statement.

Lets say a company plans to ship orders using ten trucks over three possible routes. This means the company has 310 possibilities or 59,049 solutions to choose from. Any classical computer can solve this problem with little effort. Now lets assume a situation where a transport planner wants to simulate shipments using 40 trucks over the same three routes. The possibilities, in this case, are approximately 12 Quintillion a tough ask for a classical computer. Thats where quantum computers could potentially come in.

Looking Ahead

Quantum computing has the potential to disrupt the planning landscape. Planners can run plans at the flick of a button, performing scenario simulations on the fly.

At present, the full use of quantum computers in the supply chain would be expensive and largely impractical. Another current issue is the higher rate of errors (when compared to traditional computers) experienced due to the excessive speed at which they operate. Experts and companies around the world are working to address and limit these errors.

As mentioned earlier in the article, many tech companies are providing aspects of quantum computing through an as-a-service model, which could well prove the most successful path for future widespread use. As-a-service quantum computing power would help enterprises access these capabilities at a fraction of the cost, in a similar way such models have helped businesses utilise simulation technology, high-performance computing and computer-aided engineering.

Alongside AI, the IoT, blockchain and automation, quantum computing is one of many digital tools likely to shape, streamline and optimise the future of the supply chain. As with all emerging technology, it requires an open mind and cautious optimism.

More here:
Supply Chain: The Quantum Computing Conundrum | Logistics - Supply Chain Digital - The Procurement & Supply Chain Platform

Quantum computers: This group wants to get them out of the lab and into your business – ZDNet

Five quantum computing companies, three universities and one national physical laboratory in the UK have come together in a 10 million ($13 million) new project, with an ambitious goal: to spend the next three years trying to make quantum technologies work for businesses.

Called Discovery, the program is partly funded by the UK government and has been pitched as the largest industry-led quantum computing project in the country to date. The participating organizations will dedicate themselves to making quantum technologies that are commercially viable, marking a shift from academic research to implementations that are relevant to, and scalable for, businesses.

The Discovery program will focus on photonic quantum computing, which is based on the manipulation of particles of light a branch of the field that has shown great promise but is still facing large technological barriers.

SEE: An IT pro's guide to robotic process automation (free PDF) (TechRepublic)

On the other hand, major players like IBM and Google are both developing quantum computers based on superconducting qubits made of electrons, which are particles of matter. The superconducting qubits found in those quantum devices are notoriously unstable, and require very cold temperatures to function, meaning that it is hard to increase the size of the computer without losing control of the qubits.

Photonic quantum computers, on the contrary, are less subject to interference in their environment, and would be much more practical to use and scale up. The field, however, is still in its infancy. For example, engineers are still working on ways to create the single quantum photons that are necessary for photonic quantum computers to function.

The companies that are a part of the Discovery program will be addressing this type of technical barrier over the next few years. They include photonics company M Squared, Oxford Ionics, ORCA Computing, Kelvin Nanotechnology and TMD Technologies.

"The Discovery project will help the UK establish itself at the forefront of commercially viable photonics-enabled quantum-computing approaches. It will enable industry to capitalize on the government's early investment into quantum technology and build on our strong academic heritage in photonics and quantum information," said Graeme Malcolm, CEO of M Squared.

Another key objective of the Discovery program will consist of developing the wider UK quantum ecosystem, by establishing commercial hardware supply and common roadmaps for the industry. This will be crucial to ensure that businesses are coordinating across the board when it comes to adopting quantum technologies.

Andrew Fearnside, senior associate specializing in quantum technologies at intellectual property firm Mewburn Ellis, told ZDNet: "We will need sources of hardware that all have the same required standards that everyone can comply with. This will enable everyone to speak the same language when building prototypes. Getting all the players to agree on a common methodology will make commercialization much easier."

Although quantum computers are yet to be used at a large commercial scale, the technology is expected to bring disruption in many if not all industries. Quantum devices will shake up artificial intelligence thanks to improved machine-learning models, solve optimization problems that are too large for classical computers to fathom, and boost new material discovery thanks to unprecedented simulation capabilities.

Finance, agriculture, drug discovery, oil and gas, or transportation are only a few of the many industries awaiting the revolution that quantum technology will bring about.

The UK is now halfway through a ten-year national program designed to boost quantum technologies, which is set to represent a 1 billion ($1.30 billion) investment over its lifetime.

SEE: Technology's next big challenge: To be fairer to everyone

The Discovery project comes under the umbrella of the wider national program; and according to Fearnside, it is reflective of a gradual shift in the balance of power between industry and academia.

"The national program has done a good job of enabling discussion between blue-sky researchers in university labs and industry," said Fearnside. "Blue-sky projects have now come to a point where you can think about pressing ahead and start commercializing. There is a much stronger focus on commercial partners playing a leading role, and the balance is shifting a little bit."

Last month, the UK government announced that US-based quantum computing company Rigetti would be building the country's first commercial quantum computer in Abingdon, Oxfordshire, and that partners and customers will be able to access and operate the system over the cloud. The move was similarly hailed as a step towards the commercialization of quantum technologies in the UK.

Although Fearnside acknowledged that there are still challenges ahead for quantum computing, not the least of which are technical, he expressed confidence that the technology will be finding commercial applications within the next decade.

Bridging between academia and industry, however, will require commitment from all players. Experts have previously warned that without renewed efforts from both sides, quantum ideas might well end up stuck in the lab.

Read more here:
Quantum computers: This group wants to get them out of the lab and into your business - ZDNet

Threat of Quantum Computing to Bitcoin Should be Taken Seriously, But theres Enough Time to Upgrade Current Security Systems, Experts Claim -…

LocalBitcoins, a leading peer to peer (P2P) Bitcoin exchange, notes that with the advent of quantum computing, there have been concerns that this new technology could be a threat to existing online protocols. Some experts claim that powerful quantum computers might become a legitimate threat to the security of Bitcoin (BTC) and the current encryption algorithms that it uses.

According to LocalBitcoins:

While the threat of quantum computing to Bitcoin is to be taken seriously, experts believe that Bitcoin [and other cryptocurrencies] have time to adapt to the quantum age without compromising [their] security in the process.

As explained in a blog post by LocalBitcoins, Bitcoin or BTC and its blockchain-based network is secured by cryptographic algorithms, which is why its called a cryptocurrency. Cryptography allows developers to protect certain sensitive data and communication on a platform so that only the parties authorized to view the information can access it. The LocalBitcoins team notes that cryptography uses several different algorithms, and Bitcoin depends on them to function properly.

At present, these algorithms are almost impossible to break, but quantum computers may spell trouble to these algorithms in various ways, according to LocalBitcoins.

They explain that the idea or concept behind quantum computing is to go beyond the power of traditional computers by leveraging quantum mechanics, a field in physics that describes behaviors on a subatomic scale. They also noted that when unobserved, subatomic particles can exist in multiple places at once, however, when [they have been] detected, they collapse into a single point in space-time.

They further explain:

Traditional computers operate with bits which encode either a 0 or a 1, while quantum computers use quantum bits, or qubits, which can be both a 0 or a 1 at the same time. This phenomenon is known as superposition which allows a huge amount of calculations to be carried out simultaneously.

They continued:

Bitcoins algorithm most at risk from quantum computing is its signature algorithm that uses ECDSA (Elliptic Curve Digital Signature Algorithm) [which] is used to generate the public/private key pair to sign Bitcoin transactions securely (sending and receiving coins). ECDSA uses asymmetric encryption, and the reason for it being secure comes from the need to factor multiple large prime numbers to break the algorithm. Breaking ECDSA and deriving a private key from a public key using current computers would take such an astronomical amount of time that it wouldnt even be realistic to try it out.

But with quantum computers that support parallel calculation, this same process can be carried out a lot more efficiently, and multiple types of attacks then become possible, the LocalBitcoins team noted.

They explained that the first one of these potential attacks aims to target re-used addresses. When a transaction is performed, your public key becomes visible on the blockchain or a distributed ledger technology (DLT) network. The LocalBitcoins team adds that knowing your public key, an attacker whos using quantum computers may then use your public key to derive your private key. After theyve determined what your private key might be, they can begin signing transactions on your behalf which means they can also spend your Bitcoins or any other cryptocurrency.

LocalBitcoins clarifies that addresses that have not been used to send transactions are quantum-safe because quantum computers cant read their public key.

LocalBitcoins further noted that another possible attack is the double-spend attack. This measures how fast a quantum computer can derive your private key from the already visible public key. They pointed out that if an attacker can do this before your transaction is confirmed multiple times in a block, you are essentially both trying to spend the same bitcoin, and the attacker wins.

They also mentioned:

Bitcoins hashing function used in the block creation is even more robust in the face of a quantum threat than its signature algorithm. The algorithm Bitcoin uses in its mining process is called SHA-256. When a miner solves a block and receives the right to add it to the blockchain, that miners transactions become confirmed, and part of the ledger.

They further explained:

To solve a block, a miner needs to guess a nonce, or a value that after a hash is applied, results in a number that has a certain number of leading zeroes. As a miner, you cant start from a valid result and then generate the correct nonce from it. You have to randomly guess it. This takes a lot of computing power and is behind the proof-of-work securing Bitcoins network. If the SHA-256 was broken somehow, an attacker could mine new blocks at will and earn all Bitcoin block rewards.

LocalBitcoins notes that existing quantum computers are only operated in labs and still appear to be a long way from becoming a legitimate threat to Bitcoin and other cryptocurrencies. According to estimates, a quantum computer of around 4000 qubits would be required to break Bitcoins code, while the most powerful quantum computers available right now operate with only about 50 qubits.

Industry experts predict that quantum computing machines may begin to break binary based encryption algorithms within the next decade unless theres an unexpected mathematical or physical breakthrough before that.

The LocalBitcoins team added:

When the quantum threat becomes more imminent, cryptography will have moved to more quantum-proof algorithms. In the process, Bitcoins algorithms would have become quantum-resistant as well. This can be achieved by hard-forking (backwards incompatible upgrade) the Bitcoin blockchain by consensus among the Bitcoin nodes, so it will be secure from quantum attacks.

They continued:

As long as multiple users have access to a quantum computer, no single entity will be able to gain dominance over Bitcoin mining. Perhaps in the future Bitcoins blockchain will be operated completely by nodes running on quantum computers.

Follow this link:
Threat of Quantum Computing to Bitcoin Should be Taken Seriously, But theres Enough Time to Upgrade Current Security Systems, Experts Claim -...