Archive for the ‘Quantum Computer’ Category

Ten-year Forecasts for Quantum Networking Opportunities and Deployments Over the Coming Decade – WFMZ Allentown

DUBLIN, Oct. 12, 2020 /PRNewswire/ -- The "Quantum Networking: A Ten-year Forecast and Opportunity Analysis" report has been added to ResearchAndMarkets.com's offering.

This report presents detailed ten-year forecasts for quantum networking opportunities and deployments over the coming decade.

Today there increasing talk about the Quantum Internet. This network will have the same geographical breadth of coverage as today's Internet but where the Internet carries bits, the Quantum Internet will carry qubits, represented by quantum states. The Quantum Internet will provide a powerful platform for communications among quantum computers and other quantum devices. It will also further enable a quantum version of the Internet-of-Things. Finally, quantum networks can be the most secure networks ever built - completely invulnerable if constructed properly.

Already there are sophisticated roadmaps showing how the Quantum Internet will come to be. At the present time, however, quantum networking in the real world consists of three research programs and commercialization efforts: Quantum Key Distribution (QKD) adds unbreakable coding of key distribution to public-key encryption. Cloud/network access to quantum computers is core to the business strategies of leading quantum computer companies. Quantum sensor networks promise enhanced navigation and positioning; more sensitive medical imaging modalities, etc. This report provides power ten-year forecasts of all three of these sectors.

This report provides a detailed quantitative analysis of where the emerging opportunities can be found today and how they will emerge in the future:

With regard to the scope of the report, the focus is, of course, on quantum networking opportunities of all kinds. It looks especially, however, on three areas: quantum key distribution (QKD,) quantum computer networking/quantum clouds, and quantum sensor networks. The report also includes in the forecasts breakouts by all the end-user segments of this market including military and intelligence, law enforcement, banking and financial services, and general business applications, as well as niche applications. There are also breakouts by hardware, software and services as appropriate.

In addition, there is also some discussion of the latest research into quantum networking, including the critical work on quantum repeaters. Quantum repeaters allow entanglement between quantum devices over long distances. Most experts predict repeaters will start to prototype in real-world applications in about five years, but this is far from certain.

This report will be essential reading for equipment companies, service providers, telephone companies, data center managers, cybersecurity firms, IT companies and investors of various kinds.

Key Topics Covered:

Executive SummaryE.1 Goals, Scope and Methodology of this ReportE.1.1 A Definition of Quantum NetworkingE.2 Quantum Networks Today: QKD, Quantum Clouds and Quantum Networked SensorsE.2.1 Towards the Quantum Internet: Possible Business OpportunitiesE.2.2 Quantum Key DistributionE.2.3 Quantum Computer Networks/Quantum CloudsE.2.4 Quantum Sensor NetworksE.3 Summary of Quantum Networking Market by Type of NetworkE.4 The Need for Quantum Repeaters to Realize Quantum Networking's PotentialE.5 Plan of this Report

Chapter One: Ten-year Forecast of Quantum Key Distribution1.1 Opportunities and Drivers for Quantum Key Distribution Networks1.1.1 QKD vs. PQC1.1.2 Evolution of QKD1.1.3 Technology Assessment1.2 Ten-year Forecasts of QKD Markets1.2.1 QKD Equipment and Services1.2.2 A Note on Mobile QKD1.3 Key Takeaways from this Chapter

Chapter Two: Ten-Year Forecast of Quantum Computing Clouds2.1 Quantum Computing: State of the Art2.2 Current State of Quantum Clouds and Networks2.3 Commercialization of Cloud Access to Quantum Computers2.4 Ten-Year Forecast for Cloud Access to Quantum Computers2.4.1 Penetration of Clouds in the Quantum Computing Space2.4.2 Revenue from Network Equipment for Quantum Computer Networks by End-User Industry2.4.3 Revenue from Network Equipment Software by End-User Industry2.5 Key Takeaways from this Chapter

Chapter Three: Ten-Year Forecast of Quantum Sensor Networks3.1 The Emergence of Networked Sensors3.1.1 The Demand for Quantum Sensors Seems to be Real3.2 The Future of Networked Sensors3.3 Forecasts for Networked Quantum Sensors3.4 Five Companies that will Shape the Future of the Quantum Sensor Business: Some Speculations

Chapter Four: Towards the Quantum Internet4.1 A Roadmap for the Quantum Internet4.1.1 The Quantum Internet in Europe4.1.2 The Quantum Internet in China4.1.3 The Quantum Internet in the U.S.4.2 Evolution of Repeater Technology: Ten-year Forecast4.3 Evolution of the Quantum Network4.4 About the Analyst4.5 Acronyms and Abbreviations Used In this Report

For more information about this report visit https://www.researchandmarkets.com/r/rksyxu

About ResearchAndMarkets.comResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and MarketsLaura Wood, Senior Managerpress@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470For U.S./CAN Toll Free Call +1-800-526-8630For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907Fax (outside U.S.): +353-1-481-1716

Read more here:
Ten-year Forecasts for Quantum Networking Opportunities and Deployments Over the Coming Decade - WFMZ Allentown

Billionaire Investor Vinod Khosla Speaks Out On AI’s Future and the COVID-19 Economy – EnterpriseAI

Vinod Khosla, a co-founder of the former Sun Microsystems and a longtime technology entrepreneur, venture capitalist and IT sage, makes billions of dollars betting on new technologies.

Khosla shared some of his technology and investment thoughts at a recent tech conference about the future of AI in business, AI chip design and quantum computing -- and even gave some advice to AI developers and companies about how they can successfully navigate the tumultuous times of the COVID-19 pandemic. Khosla gave his remarks at an Ask Me Anything Industry Luminary Keynote at the virtual AI Hardware Summit earlier in October. The Q&A was hosted by Rene Haas, the president of Arms IP products group, and a former executive with AI chipmaker Nvidia.

Khosla, who is ranked #353 on the Forbes 400 2020 list, has a net worth today of $2.6 billion, largely earned through his investment successes in the tech field. He founded his VC firm, Khosla Ventures, in 2004.

Here are edited segments from that 30-minute Q&A, which centered on questions asked by viewers of the virtual conference:

Rene Haas: What has been the most significant technological advancement in AI in the last year or two? And how do you anticipate it is going to change the landscape of business?

Vinod Khosla

Vinod Khosla: What's surprised me the most is bifurcation along two lines one that argues that deep learning goes all the way, and others who argue that AGI (artificial general intelligence) requires very different kinds [of uses]. My bet is that each will be good at certain functions. Now, I don't worry about AGI. Being a philosopher, I do worry about AI and AGI being used for most valuable economic functions human beings do. That's where the big opportunity is. What surprised me most is there's been great progress in language models and algorithms. But the outsize role of hardware in building models that are much more powerful, trillions of parameters per model, and how effective they can be, has been surprising. I'm somewhat biased because we have large investors in open AI. On the flip side, we are large investors in companies like Vicarious, which are taking that AGI in a very different approach.

Haas: Building on that a little bit, there are a lot of AI hardware startup companies. Some are well funded, some with high burn rates. When you think about competing with the software support ecosystem, like Nvidia has, how can startups really rely on the strength of their architecture alone? What are the kinds of things that you look at it in terms of guidelines for startups in this space?

Khosla: There's many different markets, you have to be clear. There is a training market in the data center. There's an inferencing market in the data center. There's a market for edge devices where the criteria are very different. And then there's this emerging area of what quantum computing might do in hardware. We can talk about any of these, but what's really interesting to me is how much innovation we are seeing. Companies like Nvidia and the big cloud providers, especially Google and others, have very strong efforts.

And probably the thing we've learned in semiconductors, having access to process technology and process nodes that others don't thats where the software ecosystem gives them such a large advantage. It's hard for startups to compete. Now, I could be wrong, but we've tended to avoid digital architectures, for the data center or for inferencing. We've looked at a dozen of those and chosen not to jump in. Because there's bigger players with huge software and process and resource advantages. On the analog side, it's a whole different ballgame. We've invested in analog inference. There's been multiple analog efforts. I think some haven't addressed enough of the problem to get a large enough power advantage.

So, the bottom line for a startup, is that to do better than Nvidia or one of the other larger players or cloud providers, then you've got to talk about 20X to 100X advantage in TeraOPS per watt. I think if you're not in the hundred TeraOPS per watt range, it's going to be hard to sustain a large advantage. And I see most digital efforts sort of in this one to 10 TeraOPS per watt power range. So I find the edge much more promising than the data center.

Haas: What about the difficulties of startups or companies trying to enter this field? Much of it is horizontal in nature. Do they need some kind of vertical stack or some tie into the ecosystems? Do the same challenges apply, relative to being a horizontal versus vertical business or do you think there are some different opportunities there?

Khosla: I think there will be classes of algorithms. There's clearly one class of algorithms around deep learning and things like that. The question of how architecture maps to different types of algorithms, and algorithmic approaches, is a little too early to predict, and that will determine what architectures work best.

On the edge, what's clearly going to be important is power efficiency. The really volume markets are under five watts and $5 and a couple of hundred TeraOPS. That's the price point I look at as differentiated enough for edge devices to do a lot of interesting things. Every speaker, every microphone, every sensor. You start to see price points that go from tens of pennies to a few dollars that go into these very high volume devices. I think that would be a different architecture than the stuff in the data center.

In the data center, whether inferencing and training are the same architecture or the same software stack even, I still think it's open for debate. I think in inferencing, cost matters and efficiency matters. In training, especially for the really large algorithms, probably not so much. So, hard to tap.

And then there's this really surprise thing of what quantum computing will do, and what kinds of algorithms that will run. The things we are most interested in is very specialized applications for quantum computing. We have one effort in drug discovery for quantum computing. I think material science with quantum computing is going to be interesting, possibly some financial services products based on quantum computing. So, plenty of these interesting options. I think for a while we'll see more of a bifurcation, but if I were to predict five years from now I think we'll see more unification around the types of algorithms that do certain economic tasks well.

Rene Haas

Haas: Quantum is something that has been written about for a long time and now you're starting to see some things product-wise that are looking a bit more real. As an investor, and looking at private company opportunities around quantum, do you feel like the time is now to start investing in companies that are doing things around the hardware space in quantum? Or do you look at it and say it's still years away from being commercially viable?

Khosla: In the big company world, it's definitely time for the big companies to be investing, and they're investing heavily. But that's Microsoft, Google, IBM and others. There's also a whole slew of startups where the market and products have emerged slower. And whenever things emerge slower especially on the hardware side, the big companies have an advantage because they can catch up. Whenever it takes lots and lots of resources, then the big companies have an advantage. Autonomous driving is the one area where that's mostly true, but not completely true. We've seen some radical innovation out of startups there.

So, it depends on the pace of development of a technology or deployment. I do think the time is very ripe for quantum software applications, specialized applications, to develop. But given how complex quantum is to use, such as the the interface between quantum and the regular computing world, and the full stack of software and how it runs algorithms, I think specialized algorithms will do better there.

Haas: You're obviously involved in AI chip startups. Looking at the last four years of AI chip startups, are you bullish, in general, looking back? And if so, which areas are you most excited about?

Khosla: When there's radical innovation, it's still interesting. We've seen a lot of startups, but I wouldn't say we've seen radical innovation in architectures or performance or power efficiency. And when I say power efficiency, it's really TeraOPS per watt, which is performance per watt that is really the key metric. If you see the kinds of large jumps, like 20X, 50X, 100X, then that's really interesting. Still, there's less room for it in the data center, more room for it in the edge, but every time I say something like this then some really clever person surprises me with a counter-narrative that actually is pretty compelling. So would I say I'm open for architectures? Yes. Radical changes, yes, and I think that will happen, but it's just very hard to predict today. The predictability on where things go is still low on innovation. But I always say, improbables are not unimportant. We just don't know which improbable is important. In the meantime, the traditional digital data center, even the digital edge, will probably belong to the larger players.

I do want to encourage the folks out there trying to build products. When we did the Nextgen product to compete with Intel, we very quickly got to 50% market share of the under $1,000 PC market, where we were competing on an x86 architecture with Intel. So surprises are possible, and people who take specialized approaches in market segments, there can be very interesting innovation to be done.

Haas: How large is the economic opportunity around AI and what do you think drives it?

Khosla: I'm probably more bullish. Whether you call it, AI or AGI, I think this area will be able to do most economically valuable human functions within the next decade. Probably a lot sooner. They will take time, integrating into regular workflows and traditional systems and all that. But the way I look at it, if we can replace human judgment in a task, you're saving far more money than selling a chip or a computer or something. So, if you can replace a security analyst and do their job, or have one security analyst do the job of five security analysts, or have one physician do the job of five physicians, you're saving gobs of money. And then you get to share in the human labor saving, which is where the large opportunities are. That could belong to both these combination software and hardware systems, I think that opportunity is orders of magnitude larger than any estimate I've seen today.

Haas: 2020 has been a very turbulent year. What advice would you give to tech entrepreneurs who are pushing through a recession and the remarkable situation involving the COVID-19 pandemic, while trying to build a product and build a company? What advice would you give to those entrepreneurs?

Khosla: I think the best ideas survive turbulent times. I find recessions are really the times when bigger companies cut back on some of their spending. I haven't seen that happen in this particular area. That's when people with the best ideas or with passion for a particular vision, leave those companies. So, I do see very good startups during turbulent times in general. Now, one has to be just pragmatic and adapt to the times. When money's cheap, you raise lots of money. When money is not cheap or not easily available you spend less, and take more time doing some fundamental work and getting it right. Which by the way is usually a better strategy than raising lots of money.

I do think that there is lots of opportunity. I think they have to adapt to the times and be much more thoughtful, maybe even more radical in their approach. Take larger leaps because you can take more time before you start spending the money to go to market. One of the things to keep in mind with most technologies thinking about the technology has huge implications downstream, but takes very little money. It takes very special talent. Then there's the building of the technology. And then there's the selling, and the sales or marketing usually ends up costing the most. Now's a good time to trade off for more compelling product and postpone some of the sales and marketing while the markets are uncertain. You can't afford to spend lots of money on that. So you have to adjust strategy as an entrepreneur and entrepreneurs do that fairly well.

Haas: What is your own investment philosophy, particularly when it comes to tech companies, and how does your overall portfolio, reflect that philosophy?

Khosla: We like the higher-risk, higher-upside things. I find investors generally reduce risk for good reasons, but make the consequences of success relatively inconsequential. I personally prefer larger risk, which is why I like analog right now, and make the consequential success, be it 50X or 100X better than what's available in the digital domain. I do see plenty of those kinds of opportunities still. I am not discouraged. I'm actually quite encouraged about the opportunities in this area. But, entrepreneurs usually find specialized paths to get to that first MVP product, that early traction, and then use it to broaden.

Haas: Model performance has been increasing slowly in the field of AI. Can you share your insights about that?

Khosla: In certain dimensions, I think that's true. When a technology plays out a certain way, it makes rapid progress in the beginning and then starts to peter out. Software models themselves are getting to a level of saturation. The progress on the hardware side, just scaling hardware, has been stunningly valuable as GTC-3 shows. It may give more of an advantage to the large cloud providers the people who can build, 500,000 CPU, GPU systems. But that's not for everyday use. I think that still needs to be told.

There are alternative approaches that still need to be discovered. I gave you the example of Vicarious, the robotics company we've invested in. Instead of needing 10 million or 100 million cats to recognize a cat, they're saying can we do it from 10 cats? So, maybe data becomes a lot less important. And what implications does that have for hardware architectures? It's very clear to me seeing the early results at Vicarious that it is entirely possible for AI systems to learn as rapidly and with as few examples as humans do, if the architecture is different than deep learning.

My bet is different approaches will be very good at different points, and we'll see that kind of specialization of architectures. A long time ago, 25 to 30 years ago, when you looked at Lego blocks, it came in large yellow, white, red, black and blue blocks. And there were three or four types of components. I think that's where software algorithms in AI may be today. Now, you couldn't build the Sydney Opera House out of Lego blocks back then, but then they got all these specialized components. The possibilities explode exponentially, so the combinations allow a lot more flexibility on what can happen, what systems can do. So, it might be we just need different types of algorithms to explore the capability of end-use systems. And that might have large implications for which hardware architectures work.

Hardware scaling may matter in some of these and clever architectures may matter in others. That's why I'm tracking what quantum computing may do for algorithms. Not just your standard quantum computing Shor's algorithm, etc. but real applications like drug discovery or material science. Or could you do better battery material? Those are really interesting now.

Haas: What advice do you have for first time hardware entrepreneurs, with strong architecture ideas, with really smart engineers, who don't really have a track record, and who haven't done this before -- how do you advise them to position themselves to get into this segment?

Khosla: Silicon Valley is very good at recognizing thoughtful, clever people -- they don't have to have a track record. Most successful entrepreneurs don't have track records. So, I wouldn't be afraid of that. I don't think you need a lot of management experience. Building great teams is probably the single piece of advice I give to entrepreneurs. Great and multi-dimensional teams to go after the problem, even if they haven't done it yet. Also, how the cleverness of your architecture isnt as important as the end results you deliver. Can you deliver that 20X, 50X over what the traditional players will do for your market? I think people underappreciate how much of an advantage you need in your architecture to make it worthwhile to do that startup.

And one more thing. There's a whole lot of tricks both on the models on the software side, on the hardware side. You can do hardware tricks and there's half a dozen which are very common in hardware and half a dozen that are pretty common in software, like reducing the model size. Everybody really gets there. Others have fundamental long-lasting advantages and if you're doing the startup, focus not on the tricks that give you a 5X improvement, because others will catch up to those tricks, either on software or hardware. Instead, focus on what will be the fundamental innovations five years from now, where you'll still have an advantage.

Related

Read the rest here:
Billionaire Investor Vinod Khosla Speaks Out On AI's Future and the COVID-19 Economy - EnterpriseAI

Could Quantum Computing Progress Be Halted by Background Radiation? – Singularity Hub

Doing calculations with a quantum computer is a race against time, thanks to the fragility of the quantum states at their heart. And new research suggests we may soon hit a wall in how long we can hold them together thanks to interference from natural background radiation.

While quantum computing could one day enable us to carry out calculations beyond even the most powerful supercomputer imaginable, were still a long way from that point. And a big reason for that is a phenomenon known as decoherence.

The superpowers of quantum computers rely on holding the qubitsquantum bitsthat make them up in exotic quantum states like superposition and entanglement. Decoherence is the process by which interference from the environment causes them to gradually lose their quantum behavior and any information that was encoded in them.

It can be caused by heat, vibrations, magnetic fluctuations, or any host of environmental factors that are hard to control. Currently we can keep superconducting qubits (the technology favored by the fields leaders like Google and IBM) stable for up to 200 microseconds in the best devices, which is still far too short to do any truly meaningful computations.

But new research from scientists at Massachusetts Institute of Technology (MIT) and Pacific Northwest National Laboratory (PNNL), published last week in Nature, suggests we may struggle to get much further. They found that background radiation from cosmic rays and more prosaic sources like trace elements in concrete walls is enough to put a hard four-millisecond limit on the coherence time of superconducting qubits.

These decoherence mechanisms are like an onion, and weve been peeling back the layers for the past 20 years, but theres another layer that left unabated is going to limit us in a couple years, which is environmental radiation, William Oliver from MIT said in a press release. This is an exciting result, because it motivates us to think of other ways to design qubits to get around this problem.

Superconducting qubits rely on pairs of electrons flowing through a resistance-free circuit. But radiation can knock these pairs out of alignment, causing them to split apart, which is what eventually results in the qubit decohering.

To determine how significant of an impact background levels of radiation could have on qubits, the researchers first tried to work out the relationship between coherence times and radiation levels. They exposed qubits to irradiated copper whose emissions dropped over time in a predictable way, which showed them that coherence times rose as radiation levels fell up to a maximum of four milliseconds, after which background effects kicked in.

To check if this coherence time was really caused by the natural radiation, they built a giant shield out of lead brick that could block background radiation to see what happened when the qubits were isolated. The experiments clearly showed that blocking the background emissions could boost coherence times further.

At the minute, a host of other problems like material impurities and electronic disturbances cause qubits to decohere before these effects kick in, but given the rate at which the technology has been improving, we may hit this new wall in just a few years.

Without mitigation, radiation will limit the coherence time of superconducting qubits to a few milliseconds, which is insufficient for practical quantum computing, Brent VanDevender from PNNL said in a press release.

Potential solutions to the problem include building radiation shielding around quantum computers or locating them underground, where cosmic rays arent able to penetrate so easily. But if you need a few tons of lead or a large cavern in order to install a quantum computer, thats going to make it considerably harder to roll them out widely.

Its important to remember, though, that this problem has only been observed in superconducting qubits so far. In July, researchers showed they could get a spin-orbit qubit implemented in silicon to last for about 10 milliseconds, while trapped ion qubits can stay stable for as long as 10 minutes. And MITs Oliver says theres still plenty of room for building more robust superconducting qubits.

We can think about designing qubits in a way that makes them rad-hard, he said. So its definitely not game-over, its just the next layer of the onion we need to address.

Image Credit: Shutterstock

See the rest here:
Could Quantum Computing Progress Be Halted by Background Radiation? - Singularity Hub

Study Expands Types of Physics, Engineering Problems That Can Be Solved by Quantum Computers – HPCwire

Sept. 1, 2020 A well-known quantum algorithm that is useful in studying and solving problems in quantum physics can be applied to problems in classical physics, according to a new study in the journal Physical Review Afrom University of WisconsinMadison assistant professor of physicsJeff Parker.

Quantum algorithms a set of calculations that are run on a quantum computer as opposed to a classical computer used for solving problems in physics have mainly focused on questions in quantum physics. The new applications include a range of problems common to physics and engineering, and expands on the types of questions that can be asked in those fields.

The reason we like quantum computers is that we think there are quantum algorithms that can solve certain kinds of problems very efficiently in ways that classical computers cannot, Parker says. This paper presents a new idea for a type of problem that has not been addressed directly in the literature before, but it can be solved efficiently using these same quantum computer types of algorithms.

The type of problem Parker was investigating is known as generalized eigenvalue problems, which broadly describe trying to find the fundamental frequencies or modes of a system. Solving them is crucial to understanding common physics and engineering questions, such as the stability of a bridges design or, more in line with Parkers research interests, the stability and efficiency of nuclear fusion reactors.

As the system being studied becomes more and more complex more components moving throughout three-dimensional space so does the numerical matrix that describes the problem. A simple eigenvalue problem can be solved with a pencil and paper, but researchers have developed computer algorithms to tackle increasingly complex ones. With the supercomputers available today, more and more difficult physics problems are finding solutions.

If you want to solve a three-dimensional problem, it can be very complex, with a very complicated geometry, Parker says. You can do a lot on todays supercomputers, but there tends to be a limit. Quantum algorithms may be able to break that limit.

The specific quantum algorithm that Parker studied in this paper, known as quantum phase estimation, had been previously applied to so-called standard eigenvalue problems. However, no one had shown that they could be applied to the generalized eigenvalue problems that are also common in physics. Generalized eigenvalue problems introduce a second matrix that ups the mathematical complexity.

Parker took the quantum algorithm and extended it to generalized eigenvalue problems. He then looked to see what types of matrices could be used in this problem. If the matrix is sparse meaning, if most of the numerical components that make it up are zero it means this problem could be solved efficiently on a quantum computer.

What I showed is that there are certain types of generalized eigenvalue problems that do lead to a sparse matrix and therefore could be efficiently solved on a quantum computer, Parker says. This type includes the very natural problems that often occur in physics and engineering, so this study provides motivation for applying these quantum algorithms more to generalized eigenvalue problems, because it hasnt been a big focus so far.

Parker emphasizes that quantum computers are in their infancy, and these classical physics problems are still best approached through classical computer algorithms.

This study provides a step in showing that the application of a quantum algorithm to classical physics problems can be useful in the future, and the main advance here is it shows very clearly another type of problem to which quantum algorithms can be applied, Parker says.

The study was completed in collaboration with Ilon Joseph at Lawrence Livermore National Laboratory. Funding support was provided by the U.S. Department of Energy to Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and U.S. DOE Office of Fusion Energy Sciences Quantum Leap for Fusion Energy Sciences (FWP SCW1680).

For additional images, visit https://www.physics.wisc.edu/2020/08/25/new-study-expands-types-of-physics-engineering-problems-that-can-be-solved-by-quantum-computers/

Source: University of WisconsinMadison

Continue reading here:
Study Expands Types of Physics, Engineering Problems That Can Be Solved by Quantum Computers - HPCwire

How Andersen Cheng plans to defend against the quantum computer – The Independent

A

ndersen Cheng has a way with striking and memorable analogies. Boris Johnsons government is committing 1bn to building a Frankensteins monster, he says. Im trying to build a cage without any government funding to stop it running wild. The monster in question is the quantum computer, which is a hackers dream. The cage is what Post-Quantum was set up last year to create.

Cheng was born in Hong Kong but came to England to do his O-levels and A-levels. His parents sent him to a school in Devon. They wanted me to be as far from London as possible, he says. He duly learned to drive a tractor and milk cows, but went on to study engineering at Imperial College and do an MBA. When he started working in the City at the end of the Eighties as a computer auditor, there were only six portable compact computers in the whole company and disdain for the techies from people still using calculators.

Cheng became head of credit risk at JP Morgan in the midst of the dotcom bubble. He recalls how Boo.com burnt through $150m in 18 months. There just wasnt enough broadband speed for all those virtual mannequins spinning around, he says. After a spell in private equity, Cheng decided to break away and set up on his own as a consultant in the fast-growing realm of cryptography, working on top secret projects for the British government. It was so classified even the project name was secret, he says.

See the original post:
How Andersen Cheng plans to defend against the quantum computer - The Independent