Archive for the ‘Quantum Computer’ Category

IBM, University of Tokyo Partner on Quantum Computing Project – Yahoo Finance

International Business Machines Corporation IBM recently entered into an alliance with the University of Tokyo to form the Japan-IBM Quantum Partnership, with an aim to make advancements in quantum computing field.

Per the deal, IBMs IBM Q System One will be installed in the companys facility in Japan. This will mark the third installation globally subsequent to the United States and Germany.

IBM and University of Tokyo will utilize Q System One to focus on research and development of quantum computing system, algorithms and applications; and enhance the status of quantum science education in Japan.

Both the entities aim to develop a laboratory facility, part of quantum system technology center, focused on testing and devising of innovative hardware components, including advanced microwave and cryogenic test capabilities.

We believe the latest partnership will aid the company in enhancing research in quantum computing field and increasing efficiency of its quantum computing systems and services.

Quantum Computing: Long-term Prospects

Quantum computing technologies can revolutionize commerce, cloud security, drug discovery, and supply chain and logistics, defense and military domains.

Technology companies in collaboration with quantum physicists are focusing on delivering solutions to facilitate the development of fault-tolerant algorithms, viable and scalable, quantum computer to address issues beyond current advanced supercomputing capabilities.

With these latest quantum computing initiatives, IBM also aims to aid enterprises in accelerating financial modeling processes and address technical problems in real-time.

Notably, cognitive systems such as IBM Watson run on classical computers and are capable of finding patterns and insights by deciphering large amount of data. However, in the absence of any such recognizable patterns, these systems are not of much use.

International Business Machines Corporation Revenue (TTM)

International Business Machines Corporation Revenue (TTM)

International Business Machines Corporation revenue-ttm | International Business Machines Corporation Quote

This is where quantum computers come into play as they are capable of providing solutions to problems where recognizable patterns dont exist.

Moreover, the global quantum computing market is gaining momentum on the back of growing need for model capability boost and simulation of complex data.

Per a report from MarketsandMarkets, this particular market is expected to reach $93 million in 2019 and $283 million by 2024, witnessing a CAGR of 24.9%.

Further, a Tractica report indicates that revenues in the enterprise quantum computing market worldwide are anticipated to reach $9.1 billion by 2030.

Growing worldwide spending on quantum computing will act as a key catalyst in this regard. Notably, this is being led by government and academia institution funding.

Not surprisingly then, competition in the sector is intensifying with the presence of major players such as Microsoft MSFT , Amazon AMZN , Alphabets GOOGL Google and Intel, and others including D-Wave Systems, 1QB Information Technologies, QxBranch, to name a few.

Tech Majors Initiatives in Quantum Computing

The notable tech players are leaving no stone unturned to commercialize and democratize quantum computing into enterprise domain.

Amazons latest preview launch of Amazon Braket by Amazon Web Service (AWS) at the AWS re:Invent event, is worth mentioning. Meanwhile, Microsoft Azure recently announced Azure Quantum, a full-stack, open cloud ecosystem providing a diverse set of quantum services.

Moreover, Intel recently unveiled Horse Ridge, which the chipmaker claims to be first-of-its-kind cryogenic control chip aimed at commercialization of quantum computers. Intels research on silicon spin qubits to address the challenges pertaining to refrigerating of the quantum system, are noteworthy.

Nonetheless, IBMs endeavor in the rapidly growing quantum computing field along with its strategic initiatives is expected to boost financial performance, in the days ahead.

Zacks Rank

IBM currently carries a Zacks Rank #3 (Hold). You can see the complete list of todays Zacks #1 Rank (Strong Buy) stocks here.

Biggest Tech Breakthrough in a Generation

Be among the early investors in the new type of device that experts say could impact society as much as the discovery of electricity. Current technology will soon be outdated and replaced by these new devices. In the process, its expected to create 22 million jobs and generate $12.3 trillion in activity.

A select few stocks could skyrocket the most as rollout accelerates for this new tech. Early investors could see gains similar to buying Microsoft in the 1990s. Zacks just-released special report reveals 8 stocks to watch. The report is only available for a limited time.

See 8 breakthrough stocks now>>

Story continues

More:

IBM, University of Tokyo Partner on Quantum Computing Project - Yahoo Finance

Intel Achieves Milestone in Quantum Practicality with ‘Horse Ridge’ – Database Trends and Applications

Intel Labs has unveiled what it believes to be a first-of-its-kind cryogenic control chip code-named Horse Ridge that is aimed at speeding up the development of full-stack quantum computing systems.

According to Intel, Horse Ridge will enable control of multiple quantum bits (qubits) and set a clear path toward scaling larger systems a major milestone on the path to quantum practicality.

Developed together with Intels research collaborators at QuTech, a partnership between TU Delft and TNO (Netherlands Organization for Applied Scientific Research), Horse Ridge is fabricated using Intels 22nm FinFET Low Power (22FFL) technology. In-house fabrication of these control chips at Intel will dramatically accelerate the companys ability to design, test and optimize a commercially viable quantum computer.

Quantum computers promise the potential to tackle problems that conventional computers cant handle by leveraging a phenomena of quantum physics that allows qubits to exist in multiple states simultaneously. As a result, qubits can conduct a large number of calculations at the same time dramatically speeding up complex problem-solving.

While there has been a lot of emphasis on the qubits themselves, the ability to control many qubits at the same time had been a challenge for the industry," said Jim Clarke, Intels director of Quantum Hardware. "Intel recognized that quantum controls were an essential piece of the puzzle we needed to solve in order to develop a large-scale commercial quantum system. Thats why we are investing in quantum error correction and controls. With Horse Ridge, Intel has developed a scalable control system that will allow us to significantly speed up testing and realize the potential of quantum computing.

Intel says that in the race to realize the potential of quantum computers, researchers have largely focused extensively on qubit fabrication, building test chips that demonstrate the exponential power of a small number of qubits operating in superposition.

However, it says, in early quantum hardware developments including design, testing and characterization of Intels silicon spin qubit and superconducting qubit systems it has identified a major bottleneck toward realizing commercial-scale quantum computing: interconnects and control electronics.

With Horse Ridge, Intel says it is introducing an elegant solution that will enable the company to control multiple qubits and set a clear path toward scaling future systems to larger qubit counts a major milestone on the path to quantum practicality.

For more information, go to http://www.intel.com.

The rest is here:

Intel Achieves Milestone in Quantum Practicality with 'Horse Ridge' - Database Trends and Applications

This Week in Tech: What on Earth Is a Quantum Computer? – The New York Times

David Bacon, senior software engineer in Googles quantum lab: Quantum computers do computations in parallel universes. This by itself isnt useful. U only get to exist in 1 universe at a time! The trick: quantum computers dont just split universes, they also merge universes. And this merge can add and subtract those other split universes.

David Reilly, principal researcher and director of the Microsoft quantum computing lab in Sydney, Australia: A quantum machine is a kind of analog calculator that computes by encoding information in the ephemeral waves that comprise light and matter at the nanoscale. Quantum entanglement likely the most counterintuitive thing around holds it all together, detecting and fixing errors.

Daniel Lidar, professor of electrical and computer engineering, chemistry, and physics and astronomy at the University of Southern California, with his daughter Nina, in haiku:

Quantum computerssolve some problems much fasterbut are prone to noise

Superpositions:to explore multiple pathsto the right answer

Interference helps:cancels paths to wrong answersand boosts the right ones

Entanglement makesclassical computers sweat,QCs win the race

Scott Aaronson, professor of computer science at the University of Texas at Austin: A quantum computer exploits interference among positive and negative square roots of probabilities to solve certain problems much faster than we think possible classically, in a way that wouldnt be nearly so interesting were it possible to explain in the space of a tweet.

Alan Baratz, executive vice president of research and development at D-Wave Systems: If were honest, everything we currently know about quantum mechanics cant fully describe how a quantum computer works. Whats more important, and even more interesting, is what a quantum computer can do: A.I., new molecules, new materials, modeling climate change

View post:

This Week in Tech: What on Earth Is a Quantum Computer? - The New York Times

D-Wave Announces Promotion of Dr. Alan Baratz to CEO – GlobeNewswire

BURNABY, British Columbia, Dec. 09, 2019 (GLOBE NEWSWIRE) -- D-Wave Systems Inc., the leader in quantum computing systems, software, and services, today announced that Dr. Alan Baratz will assume the role of chief executive officer (CEO), effective January 1, 2020. Baratz joined D-Wave in 2017 and currently serves as the chief product officer and executive vice president of research and development for D-Wave. He takes over from the retiring CEO, Vern Brownell.

Baratzs promotion to CEO follows the launch of Leap, D-Waves quantum cloud service, in October 2018, and comes in advance of the mid-2020 launch of the companys next-generation quantum system, Advantage.

Baratz has driven the development, delivery, and support of all of D-Waves products, technologies, and applications in recent years. He has over 25 years of experience in product development and bringing new products to market at leading technology companies and software startups. As the first president of JavaSoft at Sun Microsystems, Baratz oversaw the growth and adoption of the Java platform from its infancy to a robust platform supporting mission-critical applications in nearly 80 percent of Fortune 1000 companies. He has also held executive positions at Symphony, Avaya, Cisco, and IBM. He served as CEO and president of Versata, Zaplet, and NeoPath Networks, and as a managing director at Warburg Pincus LLC. Baratz holds a doctorate in computer science from the Massachusetts Institute of Technology.

I joined D-Wave to bring quantum computing technology to the enterprise. Now more than ever, I am convinced that making practical quantum computing available to forward-thinking businesses and emerging quantum developers through the cloud is central to jumpstarting the broad development of in-production quantum applications, said Baratz, chief product officer and head of research and development. As I assume the CEO role, Ill focus on expanding the early beachheads for quantum computing that exist in manufacturing, mobility, new materials creation, and financial services into real value for our customers. I am honored to take over the leadership of the company and work together with the D-Wave team as we begin to deliver real business results with our quantum computers.

The company also announced that CEO Vern Brownell has decided to retire at the end of the year in order to spend more time at his home in Boston with his family. Baratz will become CEO at that time. During Brownells tenure, D-Wave developed four generations of commercial quantum computers, raised over $170 million in venture funding, and secured its first customers, including Lockheed Martin, Google and NASA, and Los Alamos National Laboratory. Brownell will continue to serve as an advisor to the board.

There are very few moments in your life when you have the opportunity to build an entirely new market. My 10 years at D-Wave have been rich with breakthroughs, like selling the first commercial quantum computer. I am humbled to have been a part of building the quantum ecosystem, said Brownell, retiring D-Wave CEO. Alan has shown tremendous leadership in our technology and product development efforts, and I am working with him to transition leadership of the entire business. This is an exciting time for quantum computing and an exciting time for D-Wave. I cant imagine a better leader than Alan at the helm for the next phase of bringing practical quantum computing to enterprises around the world.

With cloud access and the development of more than 200 early applications, quantum computing is experiencing explosive growth. We are excited to recognize Alans work in bringing Leap to market and building the next-generation Advantage system. And as D-Wave expands their Quantum-as-a-Service offerings, Alans expertise with growing developer communities and delivering SaaS solutions to enterprises will be critical for D-Waves success in the market, said Paul Lee, D-Wave board chair. I want to thank Vern for his 10 years of contributions to D-Wave. He was central in our ability to be the first to commercialize quantum computers and has made important contributions not only to D-Wave, but also in building the quantum ecosystem.

About D-Wave Systems Inc.D-Wave is the leader in the development and delivery of quantum computing systems, software, and services and is the worlds first commercial supplier of quantum computers. Our mission is to unlock the power of quantum computing for the world. We do this by delivering customer value with practical quantum applications for problems as diverse as logistics, artificial intelligence, materials sciences, drug discovery, cybersecurity, fault detection, and financial modeling. D-Waves systems are being used by some of the worlds most advanced organizations, including Volkswagen, DENSO, Lockheed Martin, USRA, USC, Los Alamos National Laboratory, and Oak Ridge National Laboratory. With headquarters near Vancouver, Canada, D-Waves US operations are based in Palo Alto, CA and Bellevue, WA. D-Wave has a blue-chip investor base including PSP Investments, Goldman Sachs, BDC Capital, DFJ, In-Q-Tel, BDC Capital, PenderFund Capital, 180 Degree Capital Corp., and Kensington Capital Partners Limited. For more information, visit: http://www.dwavesys.com.

Contact D-Wave Systems Inc.dwave@launchsquad.com

More here:

D-Wave Announces Promotion of Dr. Alan Baratz to CEO - GlobeNewswire

Quantum supremacy is here, but smart data will have the biggest impact – Quantaneo, the Quantum Computing Source

Making fast and powerful quantum computing available through the cloud can enable tasks to be processed millions of times faster, and could shape lives and businesses as we know it. For example, applications using quantum computing could reduce or prevent traffic congestion, cybercrimes, and cancer. However, reaching the quantum supremacy landmark doesnt mean that Google can take its foot off the gas. Rather, the company has thrown down the gauntlet and the race to commercialize quantum computing is on. Delivering this killer technology is still an uphill battle to harness the power of highly fickle machines and move around quantum bits of information, which is inherently error-prone.

To deliver quantum cloud services, whether for commercial or academic research, Google must tie together units of quantum information (qubits) and wire data, which is part of every action and transaction across the entire IT infrastructure. If quantum cloud services get to the big league, it will still rely on traffic flows based on wire data to deliver value to users. This raises a conundrum for IT and security professionals who must assure services and deliver a flawless user experience. On one hand, the quantum cloud service solves a million computations in parallel and in real time. On the other hand, the results are delivered through wire data across a cloud, SD-WAN, or 5G network. It does not matter if a quantum computer today or tomorrow can crank out an answer 100 million times faster than a regular computer chip if an application that depends on it experiences performance problems or a threat actor is lurking in your on-premises data centre or penetrated the IT infrastructure first and last lines of defence.

No matter what the quantum computing world will look like in the future, IT teams such as NetOps and SecOps will still need to use wire data to gain end-to-end visibility into their on-premises data centres and cloud environment. Wire data is used to fill the visibility gap and see what others cant; to gain actionable intelligence to detect cyber-attacks or quickly solve service degradations. Quantum computing may increase speed, but it also adds a new dimension of infrastructure complexity and the potential for something breaking anywhere along the service delivery path. With that said, reducing risk therefore requires removing service delivery blind spots. A proven way to do that is by turning wire data into smart data to cut through infrastructure complexity and gain visibility without borders. When that happens, the IT organization will fully understand with precise accuracy the issues impacting service performance and security.

In the rush to embrace quantum computing, wire data therefore cannot, and should not, be ignored. Wire data can be turned into contextually, useful smart data. With a smart data platform, the IT organization can help make quantum computing a success by protecting user experience across different industries including automotive, manufacturing and healthcare. Therefore, while Google is striving for high quality qubits and blazing new quantum supremacy trails, success ultimately relies on using smart data for service assurance and security in an age of infinite devices, cloud applications and exponential scalability.

Ron Lifton, Senior Enterprise Solutions Manager, NETSCOUT

Original post:

Quantum supremacy is here, but smart data will have the biggest impact - Quantaneo, the Quantum Computing Source