Archive for the ‘Quantum Computer’ Category

Here’s Why Quantum Computing Will Not Break Cryptocurrencies – Forbes

Safe Deposit. Symbol of cryptocurrency safety. The man puts a physical bitcoin in small Residential ... [+] Vault. Toned soft focus picture.

Theres a lurking fear in cryptocurrency communities about quantum computing. Could it break cryptocurrencies and the encryption that protects them? How close might that be? Do the headlines around quantum supremacy mean that my private keys are at risk?

The simple answer: no. But lets dive deeper into this phenomenon and really try to understand why this is the case and how quantum computing will interact with cryptocurrencies.

To start off with, lets define quantum computing and the classical computing were all used to, and seeing where the terms compare and contrast with one another. Quantum computing can be roughly placed in the same paradigm as classical pre-1900s physics and modern physics which comprises Einsteins insights on relativity and quantum physics.

Classical computing is the kind of computers weve grown used to, the extensions of Turings theories on computation, the laptops or mobile phones that you carry around with you. Classical computing relies heavily on the manipulation of physical bits the famous 0s and 1s.

Quantum computing relies on qubits, bits that are held in superposition and use quantum principles to complete calculations. The information captured or generated by a quantum system benefits from the ability of qubits to be in more than one physical state at a time (superposition), but there is information decay in capturing the state of the system.

One point that will be immediately relevant to the discussion is that quantum computers are not universally better than classical computers as a result. When people speak about quantum supremacy, including reports from Google GOOG and/or China, they really mean that a quantum computer can do a certain task better than classical computers, perhaps one that is impossible to do in any reasonable timeframe with classical computers.

We can think of this in terms of time scales from a computing perspective there are some, but not all functions, that go from being impossible to accomplish in any meaningful human-level time period to ones that become slow but manageable with a large enough quantum computer.

In a way, you can think of Turing tests and quantum supremacy tests in much the same way. Designed at first to demonstrate the superiority of one system over another (in the case of Turing tests, artificial language generation vs. human language comprehension, in the case of quantum supremacy tests, quantum computing systems vs classical computers), theyve become more gimmick than substance.

A quantum computer has to perform better at some minute and trivial task that might seem impressive but completely useless in much the same way a Turing test of machine-generated English might fool a Ukrainian child with no fluency in the language.

This means that we have to narrow down to a function that quantum computers can be better on that would materially affect cryptocurrencies or the encryption theyre built on in order for quantum supremacy to matter.

One area of specific focus is Shors Algorithm, which can factor large prime numbers down into two smaller ones. This is a very useful property for breaking encryption, since the RSA family of encryption depends on factoring large prime numbers in exactly this manner. Shors Algorithm works in theory with a large enough quantum computer and so its a practical concern that eventually, Shors Algorithm might come into play and among other things, RSA encryption might be broken.

On this front, the US National Institute of Standards and Technology (NIST) has already started gathering proposals for post-quantum cryptography, encryption that would operate and not be broken even with much larger quantum computers than the ones were currently able to build. They estimate that large enough quantum computers to disrupt classical encryption will potentially arrive in the next twenty years.

For cryptocurrencies, a fork in the future that might affect large parts of the chain, but it will be somewhat predictable there is a lot of thought being placed on post-quantum encryption technology. Bitcoin would not be one of the first planks to fall if classical encryption were suddenly broken for a number of reasons. Yet, a soft fork (as opposed to a hard one) might be enough to help move crypto-assets from suddenly insecure keys to secure post-quantum encryption.

Even an efficient implementation of Shors Algorithm may not break some of the cryptography standards used in bitcoin. SHA-256 is theorized to be quantum-resistant.

The most efficient theoretical implementation of a quantum computer to detect a SHA-256 collision is actually less efficient than the theorized classical implementation for breaking the standard. The wallet file in the original Bitcoin client is using SHA-512 (a more secure version than SHA-256) to help encrypt private keys.

Most of the encryption in modern cryptocurrencies are built on elliptic curve cryptography rather than RSA especially in the generation of signatures in bitcoin which requires ECDSA. This is largely due to the fact that elliptic curves are correspondingly harder to crack than RSA (sometimes exponentially so) from classical computers.

Thanks to Moores law and better classical computing, secure RSA key sizes have grown so large so as to be impractical compared to elliptic curve cryptography so most people will opt for elliptic curve cryptography for performance reasons for their systems, which is the case with bitcoin.

However, quantum computers seem to flip this logic on its head: given a large enough quantum computer with enough qubits, you can break elliptic curve cryptography easier than you might break RSA.

Both elliptic curve cryptography are widely used in a bunch of other industries and use cases as well RSA-2048 and higher are standards in the conventional banking system to send encrypted information, for example.

Yet, even with a large enough quantum computer, you would still have to reveal or find somebodys public keys so they could be subject to attack. With cryptocurrency wallet reuse being frowned upon, and a general encouragement of good privacy practices, the likelihood of this attack is already being reduced.

Another area of attack could be Grovers algorithm, which can exponentially speed up mining with a large enough quantum computer though its probable that ASICs, the specialized classical computers mostly used to mine bitcoin now, would be faster compared to the earliest versions of more complete quantum computers.

This poses more of a stronger threat when it comes to the state of cryptocurrencies: the ability to mine quickly in a sudden quantum speedup could lead to destabilization of prices and more importantly control of the chain itself an unexpected quantum speedup could, if hidden, lead to vast centralization of mining and possible 51% attacks. Yet the most likely case is that larger systems of quantum computing will be treated like any kind of hardware, similar to the transition for miners between GPUs, FGPAs and ASICs a slow economic transition to better tooling.

Its conceivable that these avenues of attack and perhaps other more unpredictable ones might emerge, yet post-quantum encryption planning is already in process and through the mechanism of forks, cryptocurrencies can be updated to use post-quantum encryption standards and defend against these weaknesses.

Bitcoin and even other cryptocurrencies and their history are filled with examples of hardware and software changes that had to be made to make the network more secure and performant and good security practices in the present (avoiding wallet reuse) can help prepare for a more uncertain future.

So quantum computers being added to the mix wont suddenly render classical modes of encryption useless or mining trivial quantum supremacy now doesnt mean that your encryption or the security of bitcoin is at risk right at this moment.

The real threat is when quantum computers become many scales larger than they currently are by which point planning for post-quantum encryption, which is already well on the way would come to the fore, and at which point bitcoin and other cryptocurrencies can soft fork and use both decentralized governance and dynamism when needed in the face of new existential threats to defeat the threat of quantum supremacy.

See the original post here:
Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes

Global Quantum Computing Market Predicted to Garner $667.3 Million by 2027, Growing at 30.0% CAGR from 2020 to 2027 – [193 pages] Informative Report…

New York, USA, Dec. 22, 2020 (GLOBE NEWSWIRE) -- A latest report published by Research Dive on the globalquantum computing market sheds light on the current outlook and future growth of the market. As per the report, the global quantum computing market is expected to garner $667.3 million by growing at a CAGR of 30.0% from 2020 to 2027. This report is drafted by market experts by evaluating all the important aspects of the market. It is a perfect source of information and statistics for new entrants, market players, shareholders, stakeholders, investors, etc.

Check out How COVID-19 impacts the Global Quantum Computing Market. Click here to Connect with our Analyst to get more Market Insight: https://www.researchdive.com/connect-to-analyst/8332

Exclusive Offer - As we are running Anniversary discount, here are some additional benefits which you are entitled to avail with this report.

Free Excel Data Pack The report will cover impact of COVID-19 on this market. 20% Free Customisation 16 analyst hours support Quarterly Update on Enterprise License 24 hours priority response

Download Sample Report of the Global Quantum Computing Market and Reveal the Market Overview, Opportunity, Expansion, Growth and More: https://www.researchdive.com/download-sample/8332

The report includes:

A summary of the market with its definition, advantages, and application areas. Detailed insights on market position, dynamics, statistics, growth rate, revenues, market shares, and future predictions. Key market segments, boomers, restraints, and investment opportunities. Present situation of the global as well as regional market from the viewpoint of companies, countries, and end industries. Information on leading companies, current market trends and developments, Porter Five Analysis, and top winning business strategies.

Factors Impacting the Market Growth:

As per the report, the growing cyber-attacks across the world is hugely contributing to the growth of the global quantum computing market. Moreover, the rising implementation of quantum computing technologies in agriculture for helping farmers to improve the efficiency and yield of crops is likely to unlock rewarding opportunities for the market growth. However, absence of highly experienced employees, having knowledge regarding quantum computing is likely to hinder the market growth.

Access Varied Market Reports Bearing Extensive Analysis of the Market Situation, Updated With The Impact of COVID-19: https://www.researchdive.com/covid-19-insights

COVID-19 Impact Analysis:

The sudden outbreak of COVID-19 pandemic has made a significant impact on the global quantum computing market. During this crisis period, quantum computing technology can be used for medical research and other activities related to COVID-19 pandemic. Moreover, the technology can be beneficial for developing advanced drugs at an accelerated speed and for analyzing different types of interactions between biomolecules and fight infectious like viruses. In addition, businesses are greatly investing in the development of quantum computers for drug discovery amidst the crisis period. All these factors are expected to unlock novel investment opportunities for the market growth in the upcoming years.

Check out all Information and communication technology & media Industry Reports: https://www.researchdive.com/information-and-communication-technology-and-media

Segment Analysis:

The report segments the quantum computing market into offerings type, end user, and application.

By offerings type, the report further categorizes the market into: Consulting solutions Systems

Among these, the systems segment is expected to dominate the market by garnering a revenue of $313.3 million by 2027. This is mainly due to growing use of quantum computing in AI, radar making, machine learning technologies, and many others.

Based on application, the report further classifies the market into: Optimization Machine Learning Material Simulation

Among these, themachine learning segment is expected to observe accelerated growth and garner $236.9 million by 2027. This is mainly due to significant role of quantum computing in enhancing runtime, capacity, and learning efficiency. Moreover, quantum machine learning has the potential to speed-up various machine learning processes such as optimization, linear algebra, deep learning, and Kernel evaluation, which is likely to boost the market growth during the forecast period.

Regional Analysis:

The report explains the lookout of the global quantum computing market across several regions, including: Europe Asia Pacific LAMEA North America

Among these, the Asia-Pacific region is estimated to lead the market growth by growing at a striking growth rate of 31.60% during the forecast period. This is mainly because of the growing adoption of quantum computing technologies in numerous sectors including chemicals, healthcare, utilities & pharmaceuticals, and others in this region.

Market Players and Business Strategies:

The report offers a list of global key players in the quantum computing market and discloses some of their strategies and developments. The key players listed in the report are:

QC Ware, Corp. Cambridge Quantum Computing Limited D-Wave Systems Inc., International Business Machines Corporation Rigetti Computing 1QB Information Technologies River Lane Research StationQ Microsoft Anyon Google Inc.

These players are massively contributing to the growth of the market by performing activities such as mergers and acquisitions, novel developments, geographical expansions, and many more.

Our market experts have made use of several tools, methodologies, and research methods to get in-depth insights of the global quantum computing sector. Moreover, we strive to deliver a customized report to fulfill special requirements of our clients, on demand.Click Here to Get Absolute Top Companies Development Strategies Summary Report.

TRENDING REPORTS WITH COVID-19 IMPACT ANALYSIS

Mobile Device Management Market https://www.researchdive.com/412/mobile-device-management-marketData Center Power Market https://www.researchdive.com/415/data-center-power-marketAugmented Reality (AR) in Healthcare Market https://www.researchdive.com/covid-19-insights/218/global-augmented-reality-ar-in-healthcare-marketAI in Construction Market https://www.researchdive.com/covid-19-insights/222/ai-in-construction-market

Continued here:
Global Quantum Computing Market Predicted to Garner $667.3 Million by 2027, Growing at 30.0% CAGR from 2020 to 2027 - [193 pages] Informative Report...

QubitTech shapes the future of quantum computing – IBTimes India

We still think of quantum computing as of science fiction, but in fact, it is already there. The quantum computing industry was worth $507.1 million in 2019. Experts from the McKinsey consulting company estimate that the quantum computing industry may exceed $65 billion by 2030, and reach an unprecedented $1 trillion by 2035. So, basically, in a few years, quantum computing will become mainstream. But how does business react to this eventuality?

Tech giants like IBM, Google, Honeywell and many others are in for the race to be the first to implement quantum computing on a massive scale. There is no clear leader yet, but recently Honeywell made a bold move: the company announced that its newest quantum computer has reached a quantum volume of 64 - twice as much as computers of IBM and Google.

And while the giants are at each other's throats, smaller companies look for alternative approaches. One of the first minor companies to showcase real-life use cases for the technology is QubitTechthat has demonstrated application of quantum computing in asset management. Thus quantum computing becomes not a theoretical breakthrough, but a financially viable and useful technology for everyone.

QubitTech is a company founded by a group of independent experts in algorithmic and traditional asset management. QubitTech CEO Greg Limon, also co-founder and shareholder of Toronto-based DigiMax Globa,l is known to have conducted two successful IPOs and participated in numerous venture projects with over $2 billion funds raised. His market expertise is second to none, as he has personally raised over $300 million for a series of successful startups that have grown to become global names.

Application of quantum technologies

The QubitTech platform makes use of quantum technologies that were initially fielded by IBM and offered a unique set of tools based on machine learning methods, quantum algorithms, and quantum neural networks.

Continuous improvements and testing have allowed the algorithmic systems used by QubitTech to advance into more sophisticated areas of application and offer their users a host of adjustable settings for achieving better risk to reward ratios in financial operations.

QubitTech has a clearly defined internal structure with dedicated workgroups for separate departments. Apart from having a healthy mix of experts on the team from financial, consulting, investment banking and other areas, QubitTech designs its own software solutions using internal resources.

The technological products offered by QubitTech give users the ability to select from a variety of balanced strategies based on smart diversification achieved by the use of algorithmic and traditional methods that are applied on the Bitfinex and Binance exchange platforms. More traditional approaches are also available for clients considering their strategies conservative.

The constructs have been proven to deliver up to 7% monthly yields. The simultaneous use of several strategies has been proven to deliver more promising results and QubitTech delivers.

Apart from trading bots and quantum computing constructs, QubitTech offers a host of other products as well, underscoring the platform's title as a full-fledged ecosystem of interconnected applications. Among the products is the P2P platform CryptoLocal are:

Other services that QubitTech plans to release in 2021 include a marketplace, a dedicated gaming platform, a venture fund, and an accelerator powered by the efforts of the project community.

The company has been making headway in its global expansion and is already represented in 13 countries with 150,000 active users.

The merger of quantum computing and the cryptocurrency industry may be a novel practice, but time has proven that advanced technologies often benefit each other. And while the two industries seem to be developed separately, some companies like QubitTech are taking leaps of faith and technological development, showing audiences what combined efforts can deliver.

Continued here:
QubitTech shapes the future of quantum computing - IBTimes India

Beam me up: long-distance quantum teleportation has happened for the first time ever – SYFY WIRE

Raise your hand if you ever wanted to get beamed onto the transport deck of the USS Enterprise. Maybe we havent reached the point of teleporting entire human beings yet (sorry Scotty), but what we have achieved is a huge breakthrough towards quantum internet.

Led by Caltech, a collaborative team from Fermilab, NASAs Jet Propulsion Lab, Harvard University, the University of Calgary and AT&T have now successfully teleported qubits (basic units of quantum info) across almost 14 miles of fiber optic cables with 90 percentprecision. This is because of quantum entanglement, the phenomenon in which quantum particles which are mysteriously entangled behave exactly the same even when far away from each other.

When quantum internet is finally a thing, it will make Wifi look obsolete and dial-up even more ancient than it already is. We achieved sustained, high-fidelity quantum teleportation utilizing time-bin (time-of-arrival_ qubits of light, at the telecommunication wavelength of 1.5 microns, over fiber optic cables, Panagiotis Spentzouris, Head of Quantum Science at the Fermilab Quantum Institute, told SYFY WIRE. This type of qubit is compatible with several devices that are required for the deployment of quantum networks.

What you might recognize is the fiber optic cables used in the experiment, since they are everywhere in telecommunication tech today. Lasers, electronics and optical equipment which were also used for the experiments at Caltech (CQNET) and Fermilab (FQNET) that could someday evolve into the next iteration of internet. Though this is equipment you probably also recognize, what it did for these experiments was enable them to go off without a glitch. Information traveled across the cables at warp speed with the help of semi-autonomous systems that monitored it while while managing control and synchronization of the entangled particles. The system could run for up to a week without human intervention.

So if entangled qubits are inextricably linked despite the distance between them, is there even a limit to how far information can travel? Hypothetically, they could go on forever. What limits exist in reality are not in the qubits but the effects of their surroundings. While one of the qubits containing information stays where it is, the other one has to zoom over to wherever it needs to transfer that information. It could run into obstacles on the way.

What limits the distance that information can be transmitted is loss and noise: either from the properties of the medium we use to send the information or the effects of the environment on the medium, or imperfections on the various operations we need to perform to realize the information transfer, Spentzouris, who coauthored a study recently published in PRX Qunatum, said.

To keep quantum internet running at high precision and over distances around what it was able to cover in this experiment, the quantum teleportation that powers it needs quantum memory and quantum repeaters. Quantum memory is basically the quantum version of the memory your computer and smartphone use now. Instead of storing memory as something like 100101011, it stores it in the form of qubits. To make it possible for entangled qubits to travel as far as possible, quantum repeaters make it easier for those qubits to traverse by splitting it into sections over which they are teleported.

With this system, Spentzouris and his team are planning to lay out the epic Illinois Express Quantum Network (IEQNET), which will use the same technologies that the CQNET and FQNET experiments so successfully pulled off. More tech will obviously needed to realize this sci-fi brainchild. It will combine quantum and non-quantum functions for its quantum nodes and controls. The only thing missing will be the repeaters, since they will need more development to operate over such an expanse. Spentzouris believes quantum computing itself reaches far beyond internet.

Fully distributed quantum computing includes applications include GPS, secure computation beyond anything that can be achieved now, all the way to enabling advances in designing new materials and medicine, as well basic science discoveries, he said. It will unleash the full power of quantum computing and have a profound impact on our lives.

Go here to read the rest:
Beam me up: long-distance quantum teleportation has happened for the first time ever - SYFY WIRE

Two Years into the Government’s National Quantum Initiative – Nextgov

Monday markedtwo years since the passage of the National Quantum Initiative, or NQI Actand in that time, federal agencies followed through on its early calls and helped lay the groundwork for new breakthroughs across the U.S. quantum realm.

Now, the sights of those helping implement the law are set on the future.

I would say in five years, something we'd love to see is ... a better idea of, What are the applications for a quantum computer thats buildable in the next fiveto 10 years, that would be beneficial to society? the Office of Science and Technology Policy Assistant Director for Quantum Information Science Dr. Charles Tahan told Nextgov in an interview Friday. He also serves as the director of the National Quantum Coordination Officea cooperation-pushing hub established by the legislation.

Tahan reflected on some foundational moves made over the last 24 months and offered a glimpse into his teams big-ticket priorities for 2021.

Quantum devices and technologies are among an ever-evolving field that hones in on phenomena at the atomic scale. Potential applications are coming to light, and are expected to radically reshape science, engineering, computing, networking, sensing, communication and more. They offer promises like unhackable internet or navigation support in places disconnected from GPS.

Federal agencies have a long history of exploring physical sciences and quantum-related pursuitsbut previous efforts were often siloed. Signed by President Donald Trump in 2018, the NQI Act sought to provide for a coordinated federal program to accelerate quantum research and development for the economic and national security of America. It assigned specific jobs for the National Institute of Standards and Technology, Energy Department and National Science Foundation, among others, and mandated new collaborations to boost the nations quantum workforce talent pipeline and strengthen societys grasp of this relatively fresh area of investment. The functions of the National Quantum Coordination Office, or NQCO, were also set forth in the bill, and it was officially instituted in early 2019. Since then, the group has helped connect an array of relevant stakeholders and facilitate new initiatives proposed by the law.

Now, everything that's been called out in the act has been establishedits started up, Tahan explained. He noted the three agencies with weighty responsibilities spent 2019 planning out their courses of action within their communities, and this year, subsequently launched weighty new efforts.

One of the latest was unveiled in August by the Energy Department, which awarded $625 million over five yearssubject to appropriationsto its Argonne, Brookhaven, Fermi, Oak Ridge and Lawrence Berkeley national laboratories to establish QIS Research Centers. In each, top thinkers will link up to push forward collaborative research spanning many disciplines. Academic and private-sector institutions also pledged to provide $340 million in contributions for the work.

These are about $25 million eachthat's a tremendous amount of students, and postdocs, and researchers, Tahan said. And those are spread out across the country, focusing on all different areas of quantum: computing, sensing and networking.

NSF this summer also revealed the formation of new Quantum Leap Challenge Institutes to tackle fundamental research hurdles in quantum information science and engineering over the next half-decade. The University of Colorado, University of Illinois-Urbana-Champaign, and University of California, Berkeley are set to head and house the first three institutes, though Tahan confirmed more could be launched next year. The initiative is backed by $75 million in federal fundingand while it will take advantage of existing infrastructures, non-governmental entities involved are also making their own investments and constructing new facilities.

That's the foundation, you know, Tahan said. The teams have been formed, the research plans have been writtenthat's a tremendous amount of workand now they're off actually working. So now, we start to reap the rewards because all the heavy lifting of getting people organized has been done.

Together with NSF, OSTP also helped set in motion the National Q-12 Education Partnership. It intends to connect public, private and academic sector quantum players and cohesively create and release learning materials to help U.S. educators produce new courses to engage students with quantum fields. The work is ultimately meant to spur K-12 students' interest in the emerging areas earlier into their education, and NSF will award nearly $1 million across QIS education efforts through the work.

And beyond the governments walls and those of academia, the NQI Act also presented new opportunities for industry. Meeting the laws requirements, NIST helped convene a consortium of cross-sector stakeholders to strategically confront existing quantum-related technology, standards and workforce gaps, and needs. This year, that groupthe Quantum Economic Development Consortium, or QED-Cbloomed in size, established a more formal membership structure and announced companies that make up its steering committee.

It took a year or more to get all these companies together and then write partnership agreements. So, that partnership agreement was completed towards the beginning of summer, and the steering committee signed it over the summer, and now there are I think 100 companies or so who have signed it, Tahan said. So, it's up and running. It's a real economic development consortiumthats a technical thingand that's a big deal. And how big it is, and how fast it's growing is really, really remarkable.

This fall also brought the launch of quantum.gov, a one-stop website streamlining federal work and policies. The quantum coordination office simultaneously released a comprehensive roadmap pinpointing crucial areas of needed research, deemed the Quantum Frontiers Report.

That assessment incorporates data collected from many workshops, and prior efforts OSTP held to promote the national initiative and establishes eight frontiers that contain core problems with fundamental questions confronting QIS today and must be addressed to push forward research and development breakthroughs in the space. They include expanding opportunities for quantum technologies to benefit society, characterizing and mitigating quantum errors, and more.

It tries to cut through the hype a little bit, Tahan explained. It's a field that requires deep technical expertise. So, it's easy to be led in the wrong direction if you don't have all the data. So we try to narrow it down into here are the important problems, here's what we really don't know, heres what we do know, and go this way, and that will, hopefully benefit the whole enterprise.

Quantum-focused strides have also been made by the U.S. on the international front. Tahan pointed to the first quantum cooperation agreement signed between America and Japan late last year, which laid out basic core values guiding their working together.

We've been using that as a model to engage with other countries. We've had high-level meetings with Australia, industry collaborations with the U.K., and we're engaging with other countries. So, that's progressing, Tahan said. Many countries are interested in quantum as you can guesstheres a lot of investments around the worldand many want to work with us on going faster together.

China had also made its own notable quantum investments (some predating the NQI Act), and touted new claims of quantum supremacy, following Google, on the global stage this year.

I wouldn't frame it as a competition ... We are still very much in the research phase here, and we'll see how those things pan out, Tahan said. I think we're taking the right steps, collectively. The U.S. ecosystem of companies, nonprofits and governments arebased on our strategy, both technical and policiesgoing in the right direction and making the right investments.

Vice President-elect Kamala Harris previously put forthlegislationto broadly advance quantum research, but at this point, the Biden administration hasnt publicly shared any intentions to prioritize government-steered ongoing or future quantum efforts.

[One of] the big things we're looking towards in the next year, is workforce development. We have a critical shortage or need for talent in this space. Its a very diverse set of skills. With these new centers, just do the math. How many students and postdocs are you going to need to fill up those, to do all that research? It's a very large number, Tahan said. And so we're working on something to create that pipeline.

In that light, the team will work to continue to develop NSFs ongoing, Q-12 partnership. Theyll also reflect on whats been built so far through the national initiative to identify any crucial needs that may have been looked over.

As you stand something up thats really big, you're always going to make some mistakes. What have you missed? Tahan noted.

And going forward, the group plans to hone deeper in on balancing the economic and security implications of the burgeoning fields.

As the technology gets more and more advanced, how do we be first to realize everything but also protect our investments? Tahan said. And getting that balance right is going to require careful policy thinking about how to update the way the United States does things.

Here is the original post:
Two Years into the Government's National Quantum Initiative - Nextgov