Archive for the ‘Quantum Computer’ Category

Quantum computing will impact the enterprise–we just don’t know how – TechRepublic

Quantum computing promises to take on problems that were previously unsolvable. This whole new level of compute power will make it possible to crunch incredible volumes of data that traditional computers cant manage. It will allow researchers to develop new antibiotics, polymers, electrolytes, and so much more.

While the options for quantum computing uses may seem endless, the enterprise is still deciding if this is all just a pipe dream or a future reality.

TechRepublic Premium recently surveyed 598 professionals to learn what they know about quantum computing and what they dont. This report will fill in some of those gaps.

The survey asked the following questions:

Quantum computing is unknown territory for almost all of the survey respondents, as 90% stated that they had little to no understanding of the topic. In fact, only 11% of the 598 respondents said they had an excellent understanding of quantum computing.

Further, 36% of respondents said they were not sure which company was leading the race to develop a quantum computer. IBM got 28% of the votes, and Google got 18%. 1QBit and D-Wave each got 6% of votes. Honeywell came in at 3%.

In terms of industry impact, more than half of the respondents (58%) said that quantum computing will have either a significant impact or somewhat of an impact on the enterprise. While all industries will benefit through different use cases because quantum computing allows data to be consumed and processed faster while using less energy, 42% of survey respondents said IT would benefit the most. The pharmaceutical and finance sectors followed at 14% and 12%, respectfully.

To read all of the survey results, plus analysis, download the full report.

Read the original:
Quantum computing will impact the enterprise--we just don't know how - TechRepublic

IBM and Mastercard among partners of 11.1m Irish quantum project – Siliconrepublic.com

A new 11.1m project has launched with the aim of uniting Irelands various quantum computer research groups.

Some of the biggest names in tech and research have joined forces with the aim of bolstering Irelands quantum computer efforts. The 11.1m Quantum Computing in Ireland (QCoir) initiative will work on a software platform integrating multiple quantum bit technologies being developed in Ireland.

Unlike a traditional binary computer that uses binary bits which can be either one or zero a quantum bit (qubit) can be one, zero or both at the same time. This gives quantum computers the power to solve some of the worlds most complex problems in a fraction of the time that it would take a binary computer.

QCoir partners include Equal1 Labs, IBM, Rockley Photonics, Maynooth University, the Tyndall National Institute, University College Dublin and Mastercard. The project received 7.3m in funding under the Disruptive Technologies Innovation Fund, a 500m fund established under Project Ireland 2040.

Quantum computing is seen as the future of computer technology, said Dr Emanuele Pelucchi, head of epitaxy and physics of nanostructures at Tyndall, based at University College Cork.

Its computing built on the principles of quantum physics, creating, storing and accessing data at atomic and subatomic levels to create vastly powerful computers.

Sources of multiple entangled photons uniquely allow for preparation of highly entangled quantum states. QCoir will leverage the on-chip photonic qubit platform based on site-controlled III-V quantum dots. These unique dots were developed at Tyndall.

Tyndalls CEO, Prof William Scanlon, added that the partnership will set the foundations for a national quantum ecosystem.

It brings together hardware and software providers with application users, and sees multinationals working side by side with researchers and SMEs, he said.

These kinds of industry and academic research partnerships are what will allow Ireland to build a quantum value proposition at international scale.

Quantum computing research is continuing to progress in Ireland. Earlier this year, a team from Trinity College Dublin said it had taken a major step towards the holy grail of quantum computing: a stable, small-scale quantum computer.

See the original post:
IBM and Mastercard among partners of 11.1m Irish quantum project - Siliconrepublic.com

New York needs to be reimagined with technology and job training – Crain’s New York Business

Our response to Covid-19 offers a similar opportunity. Although theres no doubt we must focus on addressing immediate problems (schools, contact tracing, saving small businesses), we also should put thought into New Yorks future. Repairing is one thing, but designing a foundation is another. The new street grid, transit reforms and development policies that came out of 9/11 attest to the importance of the latter.

New York leaders should therefore take a few steps to chart the 21st century. In addition to controlling the virus and helping people in need, we must develop a grand strategy that recognizes the economic changes that were already happening before the pandemic, and leverage them in a way that benefits everyone.

Step one: capitalizing on emerging industries. Here the tech sector is a good starting point. Not only will tech companies continue to grow, but so too will tech aid and fuel the growth of every other kind of business. The areas that we should invest in include cybersecurity, quantum computing, artificial intelligence, transportation and smart manufacturing. Not only are they slated to create many jobs, but they also will increasingly undergird every other industry. A recent study on the projected impact of quantum computing on the New York economy, for instance, found that more than 57,000 new jobs will be generated in this area during the next five years, with that number expected to continue to grow as the technology advances. Policymakers and entrepreneurs need to work together to ensure that momentum keeps moving into the next decade, and create the right business conditions for New York to become an emerging tech hub.

Another way of putting this is reinvention by necessity. With more and more of our lives happening in a virtual world, the safety and efficiency challenges facing organizations have changed. Cyber threats, for example, are now a regular vulnerability for businesses and governments alike. Companies need rapid data processing like never before. Quantum computing and advanced malware detection are crucial for the economy. Not only will emerging tech generate growth, but it will also be a necessary component for the economy of tomorrow.

The next steps are doubling down on workforce development and ensuring that people can actually break into the sectors. Job openings in AI and cybersecurity dont mean much if New Yorkers arent qualified for them. We, therefore, need to expand our roster of digital skills programmingwhich includes computer science in the classroom, boot camps for aspiring coders, and a bevy of private training classes for entrepreneurs and workers. If the tech economy is to be inclusive, well need to put as much emphasis on teaching people the requisite skills as we do teaching them arithmetic.

Closing the digital divide is another step. Before Covid-19, we were already spending a lot of time online. In the midst of the pandemic, that trend has been amplified. People now need speedy, affordable internet connections to do their job, go to school, pay bills and get through each day. The fact that there are disparities in internet access is an impediment to the economy and only exacerbates existing inequalities. A strong 5G network throughout the city and state would help solve that issue and ultimately allow workers to take the necessary steps to move into the tech sector.

The good news is we already have parts of the foundation. New York has nearly unlimited investment resources, and state and local leaders have shown their appreciation for what tech can do.

The key is tying all the parts together and creating a new economy that offers opportunities to all.

Lynn McMahon is themanaging director of Accentures metro New York office. Julie Samuels is the executive director of Tech:NYC.

Read more from the original source:
New York needs to be reimagined with technology and job training - Crain's New York Business

The Importance of Funding Quantum Physics, Even in a Pandemic – Inside Philanthropy

Lets get subatomic. In philanthropic circles, arcane topics such as theoretical physics and quantum mechanics have a tough time attracting significant funding. Grantseekers can find it challenging to convey to potential donors the importance of subjects that are not only outside the ken of most non-scientists, but which may not seem as pressing as emergencies like global pandemics, poverty or climate change. Even within science funding, public and private, the life sciences dominate.

But the Perimeter Institute, a center for theoretical physics based in Waterloo, Ontario, has been successfully attracting funding through a pioneering public-private funding model. We wrote about Perimeter and its approach last year in the wake of the 20-year-old institutes contribution to developing the worlds first image of a black hole.

In short, Perimeter draws a blend of support from government, industry and private funders, and has become a worldwide leader in advancing talent and new discoveries in theoretical physics.

Just last week, Perimeter announced its new Clay Riddell Centre for Quantum Matter, a research hub where scientists will study the subatomic world of quantum mechanics to understand and discover new states of matteryou know, states of matter other than the familiar solid, liquid, gas and plasma that you learned about in high school. (Dont ask us to explain plasma.)

The new center is the culmination of a 10-year, $25 million investment in quantum matter research, made possible by a $10 million founding donation from the Riddell Family Charitable Foundation. Clay Riddell, who died in 2018, was a Canadian entrepreneur and philanthropist. Physicists believe that study of quantum science and matter will eventually lead to useful technologies and abilities that stretch the imagination.

That the theoretical science of today leads to the technologies of tomorrow is a key message in basic scienceand especially funding for basic science, explained Greg Dick, Perimeters executive director of advancement and senior director of public engagement. Consider the theory of special relativity and curved space: One hundred years after Einstein proposed it, Dick said, special relativity is a necessary element of GPS navigation systems in cars and other settings. The theories of quantum mechanics led in just a few decades to the computer age. And before all that, the theories of magnetism and electricity eventually translated into practically every single thing we use every day.

When electricity and magnetism were discovered, the problem of the day was air pollution in New York City from the manure that horse hoofs pulverized into dust, said Dick. But fortunately, people were thinking about esoteric questions of electricity and magnetism, and that changed society.

In other words, society can ill afford to stop funding basic and theoretical science. The exciting thing is that the time from new theory to useful technology is getting shorter, Dick said. Perhaps in a decade, the study of quantum matter could lead to solutions for next-generation quantum computers, medical diagnostics, transportation, superconductors for energy grids and cryptography for data security and communications.

But just as likely, said Dick, the study of quantum matter will enable the creation of exotic materials and technologies no one currently expects or imagines.

And this brings us to why the coronavirus pandemic, which has demanded so much of the worlds attention, is helping science grantseekers connect with funders.

Obviously, when COVID started, there was a pause (in fundraising), but interestingly, COVID has also moved the relevance and value of foundational science to the forefront of peoples minds, said Dick. Yes, the theoretical physics that we do is nuanced, but COVID has put science on a pedestal. Its actually easier to have that conversation about the value of science.

Whatever their understanding of physics, prospective donors can easily grasp the importance of the basic research that has enabled todays search for treatments and vaccines for COVID-19.

In a related manner, the COVID-19 pandemic changed the nature of the social interactions with potential donors, said Dick. In the past, wed host big events and parties, but now, the pivot to digital communication has really opened up new ways to connect with supporters. Those person-to-person video calls can actually enable more personal and deeper conversations, he said.

Perimeter was established in 1999, seeded with $100 million from Mike Lazaridis, the founder of the Blackberry smartphone pioneer Research In Motion. Bringing the public along as enthusiastic partners was always a requirement, said Dick. Mikes vision right at the beginning was world-class research, for sure, but he also wanted that message of foundational science baked into Perimeter from the very beginning.

As a result, Perimeter also offers classroom-ready educational resources used by teachers around the world, reaching millions of students.

Originally posted here:
The Importance of Funding Quantum Physics, Even in a Pandemic - Inside Philanthropy

Material found in paint may hold the key to a technological revolution – Advanced Science News

The waste chips of paint you strip off the walls might not be so useless afterall.

Image credit: Sandia National Laboratories

For the next generation of computer processors, one persistent challenge for researchers is finding novel ways to make non-volatile memory on an ever-smaller scale. As smaller processors inevitably lead toward a finite limit on space and therefore processing power quantum computing or new materials that move away from traditional silicon chips are thought to overcome this barrier.

Now, researchers at Sandia National Laboratory, California, and the University of Michigan, publishing in Advanced Materials, have made a step forward in realizing a solution to this problem using a new material in processing chips for machine-learning applications, that gives these computers more processing power than conventional computer chips. The specific obstacle the authors wanted to overcome was the limitations with filamentary resistive random access memory (RRAM), in which defects occur within the nanosized filaments. The team instead wanted to create filament-free bulk RRAM cells.

The materials the authors use, titanium oxide or TiO2, may sound like a rather mundane inorganic substance to readers unfamiliar with it, but it is in fact a lot more common than most people realize. If you ever watched Bob Rosss wonderful The Joy of Painting, you may be more familiar with TiO2 as titanium white the name it is given when used as a pigment in paints. In fact, TiO2 is ubiquitous in paints not just on the landscape artists pallet, but in house paints, varnishes, and other coatings. It is also found in sunscreen and toothpaste.

The point is, TiO2 is cheap and easy to make, which is one of the reasons this new-found application in computer technology is so exciting.

A. Alec Talin of the Sandia National Laboratory, lead author of the paper, explained why this cheap, nontoxic substance is ideal for his teams novel processing chip: Its an oxide, theres already oxygen there. But if you take a few out, you create what are called oxygen vacancies. It turns out that when you create oxygen vacancies, you make this material electrically conductive.

These vacancies can also store electrical data, a key ingredient computing power. These oxygen vacancies are created by heating a computer chip with a titanium oxide coating 150 C, and through basic electrochemistry, some of the oxygen in the TiO2 coating can be removed, creating oxygen vacancies.

When it cools off, it stores any information you program it with, Talin said.

Furthermore, their TiO2-based processor not only offers a new way of processing digital information, it also has the potential to fundamentally alter the way computers operate. Currently, computers work by storing data in one place and processing that same data in another place. In other words, energy is wasted in moving data from one place to another before it can be processed.

What weve done is make the processing and the storage at the same place, said Yiyang Li of the University of Michigan and first author of the paper. Whats new is that weve been able to do it in a predictable and repeatable manner.

This is particularly important for machine-learning and deep neural network applications, where as much computing power is needed for data processing, and not data moving.

Li explained: If you have autonomous vehicles, making decisions about driving consumes a large amount of energy to process all the inputs. If we can create an alternative material for computer chips, they will be able to process information more efficiently, saving energy and processing a lot more data.

Talin also sees applications in everyday devices that are already ubiquitous. Think about your cell phone, he said. If you want to give it a voice command, you need to be connected to a network that transfers the command to a central hub of computers that listen to your voice and then send a signal back telling your phone what to do. Through this process, voice recognition and other functions happen right in your phone.

In an age where digital privacy is important, it may be attractive to consumers to know sensitive datasuch as the sound of their own voice stays in their phone, rather than being sent to the Cloud first, where accountability and control is less clear-cut.

Like many advances in science, the discovery of this technological application of TiO2 is, as Bob Ross would call it, yet another happy accident, that has real-world, positive applications.

Reference: Yiyang Li et al., FilamentFree Bulk Resistive Memory Enables Deterministic Analogue Switching, Advanced Materials (2020) DOI: 10.1002/adma.202003984

Quotes adapted from the Sandia National Laboratory press release.

Read more:
Material found in paint may hold the key to a technological revolution - Advanced Science News