Archive for the ‘Quantum Computer’ Category

MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation – SciTechDaily

A tunable coupler can switch the qubit-qubit interaction on and off. Unwanted, residual (ZZ) interaction between the two qubits is eliminated by harnessing higher energy levels of the coupler. Credit: Krantz Nanoart

MIT researchers demonstrate a way to sharply reduce errors in two-qubit gates, a significant advance toward fully realizing quantum computation.

MIT researchers have made a significant advance on the road toward the full realization of quantum computation, demonstrating a technique that eliminates common errors in the most essential operation of quantum algorithms, the two-qubit operation or gate.

Despite tremendous progress toward being able to perform computations with low error rates with superconducting quantum bits (qubits), errors in two-qubit gates, one of the building blocks of quantum computation, persist, says Youngkyu Sung, an MIT graduate student in electrical engineering and computer science who is the lead author of a paper on this topicpublished on June 16, 2021, in Physical Review X. We have demonstrated a way to sharply reduce those errors.

In quantum computers, the processing of information is an extremely delicate process performed by the fragile qubits, which are highly susceptible to decoherence, the loss of their quantum mechanical behavior. In previous research conducted by Sung and the research group he works with, MIT Engineering Quantum Systems, tunable couplers were proposed, allowing researchers to turn two-qubit interactions on and off to control their operations while preserving the fragile qubits. The tunable coupler idea represented a significant advance and was cited, for example, by Google as being key to their recent demonstration of the advantage that quantum computing holds over classical computing.

Still, addressing error mechanisms is like peeling an onion: Peeling one layer reveals the next. In this case, even when using tunable couplers, the two-qubit gates were still prone to errors that resulted from residual unwanted interactions between the two qubits and between the qubits and the coupler. Such unwanted interactions were generally ignored prior to tunable couplers, as they did not stand out but now they do. And, because such residual errors increase with the number of qubits and gates, they stand in the way of building larger-scale quantum processors. ThePhysical Review Xpaper provides a new approach to reduce such errors.

We have now taken the tunable coupler concept further and demonstrated near 99.9 percent fidelity for the two major types of two-qubit gates, known as Controlled-Z gates and iSWAP gates, says William D. Oliver, an associate professor of electrical engineering and computer science, MIT Lincoln Laboratory fellow, director of the Center for Quantum Engineering, and associate director of the Research Laboratory of Electronics, home of the Engineering Quantum Systems group. Higher-fidelity gates increase the number of operations one can perform, and more operations translates to implementing more sophisticated algorithms at larger scales.

To eliminate the error-provoking qubit-qubit interactions, the researchers harnessed higher energy levels of the coupler to cancel out the problematic interactions. In previous work, such energy levels of the coupler were ignored, although they induced non-negligible two-qubit interactions.

Better control and design of the coupler is a key to tailoring the qubit-qubit interaction as we desire. This can be realized by engineering the multilevel dynamics that exist, Sung says.

The next generation of quantum computers will be error-corrected, meaning that additional qubits will be added to improve the robustness of quantum computation.

Qubit errors can be actively addressed by adding redundancy, says Oliver, pointing out, however, that such a process only works if the gates are sufficiently good above a certain fidelity threshold that depends on the error correction protocol. The most lenient thresholds today are around 99 percent. However, in practice, one seeks gate fidelities that are much higher than this threshold to live with reasonable levels of hardware redundancy.

The devices used in the research, made at MITs Lincoln Laboratory, were fundamental to achieving the demonstrated gains in fidelity in the two-qubit operations, Oliver says.

Fabricating high-coherence devices is step one to implementing high-fidelity control, he says.

Sung says high rates of error in two-qubit gates significantly limit the capability of quantum hardware to run quantum applications that are typically hard to solve with classical computers, such as quantum chemistry simulation and solving optimization problems.

Up to this point, only small molecules have been simulated on quantum computers, simulations that can easily be performed on classical computers.

In this sense, our new approach to reduce the two-qubit gate errors is timely in the field of quantum computation and helps address one of the most critical quantum hardware issues today, he says.

Reference: Realization of High-Fidelity CZ and ZZ-Free iSWAP Gates with a Tunable Coupler by Youngkyu Sung, Leon Ding, Jochen Braumller, Antti Vepslinen, Bharath Kannan, Morten Kjaergaard, Ami Greene, Gabriel O. Samach, Chris McNally, David Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson and William D. Oliver, 16 June 2021, Physical Review X.DOI: 10.1103/PhysRevX.11.021058

Here is the original post:
MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation - SciTechDaily

Keynotes Announced for IEEE International Conference on Quantum Computing and Engineering (QCE21) – PRNewswire

"IEEE is now at the center of a global conversation to understand the power and promise of quantum computing." Travis Humble, Oak Ridge National Labs

Also known as IEEE Quantum Week, QCE21 is unique by integrating dimensions from academic and business conferences and will reveal cutting edgeresearch and developments featuring quantum research, practice, applications, education, and training.

QCE21's Keynote Speakersinclude the following quantum groundbreakers and leaders:

Throughparticipation from the international quantum community,QCE21 has developed an extensive conference program withworld-class keynote speakers, technical paper presentations,innovative posters, excitingexhibits, technical briefings, workforce-building tutorials, community-building workshops,stimulating panels,and Birds-of-Feather sessions.

Papers accepted by QCE21 will be submitted to the IEEE Xplore Digital Library, and the best papers will be invited to the journalsIEEE Transactions on Quantum Engineering(TQE)andACM Transactions on Quantum Computing(TQC).

QCE21 is co-sponsored by IEEE Computer Society, IEEE Communications Society, IEEE Council of Superconductivity, IEEE Future Directions Committee, IEEE Photonics Society, IEEE Technology and Engineering Management Society, IEEE Electronics Packaging Society, IEEE Signal Processing Society (SP), and IEEE Electron Device Society (EDS).

The inaugural 2020 IEEE Quantum Week built a solid foundation and was highly successful over 800 people from 45 countries and 225 companies attended the premier event that delivered 270+ hours of programming on quantum computing and engineering.

The second annual 2021 Quantum Week will virtually connect a wide range of leading quantum professionals, researchers, educators, entrepreneurs, champions, and enthusiasts to exchange and share their experiences, challenges, research results, innovations, applications, and enthusiasm, on all aspects of quantum computing, engineering and technologies. The IEEE Quantum Week schedule will take place during Mountain Daylight Time (MDT).

VisitIEEE QCE21for all event news including sponsorship and exhibitor opportunities.

QCE21 Registration PackageprovidesVirtual Accessto IEEE Quantum Week Oct 18-22, 2021 as well asOn-Demand Accessto all recorded events until the end of December 2021 featuringover 270 hours of programming in the realm of quantum computing and engineering.

Register hereto be a part of IEEE Quantum Week 2021.

About the IEEE Computer SocietyTheIEEE Computer Societyis the world's home for computer science, engineering, and technology. A global leader in providing access to computer science research, analysis, and information, the IEEE Computer Society offers a comprehensive array of unmatched products, services, and opportunities for individuals at all stages of their professional career. Known as the premier organization that empowers the people who drive technology, the IEEE Computer Society offers international conferences, peer-reviewed publications, a unique digital library, and training programs.

About the IEEE Communications SocietyTheIEEE Communications Societypromotes technological innovation and fosters creation and sharing of information among the global technical community. The Society provides services to members for their technical and professional advancement and forums for technical exchanges among professionals in academia, industry, and public institutions.

About the IEEE Council on SuperconductivityTheIEEE Council on Superconductivityand its activities and programs cover the science and technology of superconductors and their applications, including materials and their applications for electronics, magnetics, and power systems, where the superconductor properties are central to the application.

IEEE Electron Device Society (EDS)The IEEE Electron Device Societyfosters professional growth of its members by satisfying their needs for easy access to and exchange of technical information, publishing, education, and technical recognition and enhancing public visibility in the field of Electron Devices. The IEEE EDS promotes excellence in the field of electron devices for the benefit of humanity The EDS field-of-interest includes all electron and ion based devices, in their classical or quantum states, using environments and materials in their lowest to highest conducting phase, in simple or engineered assembly, interacting with and delivering photo-electronic, electro-magnetic, electromechanical, electro-thermal, and bio-electronic signals.

About the IEEE Electronics Packaging SocietyTheIEEE Electronics Packaging Societyis the leading international forum for scientists and engineers engaged in the research, design, and development of revolutionary advances in microsystems packaging and manufacturing.

About the IEEE Future Directions Quantum InitiativeIEEE Quantumis an IEEE Future Directions initiative launched in 2019 that serves as IEEE's leading community for all projects and activities on quantum technologies. IEEE Quantum is supported by leadership and representation across IEEE Societies and OUs. The initiative addresses the current landscape of quantum technologies, identifies challenges and opportunities, leverages, and collaborates with existing initiatives, and engages the quantum community at large.

About the IEEE Photonics SocietyTheIEEE Photonics Societyforms the hub of a vibrant technical community of more than 100,000 professionals dedicated to transforming breakthroughs in quantum physics into the devices, systems, and products to revolutionize our daily lives. From ubiquitous and inexpensive global communications via fiber optics, to lasers for medical and other applications, to flat-screen displays, to photovoltaic devices for solar energy, to LEDs for energy-efficient illumination, there are myriad examples of the Society's impact on the world around us.

IEEE Signal Processing Society (SPS)The IEEE Signal Processing Societyis an international organization whose purpose is to: advance and disseminate state-of-the-art scientific information and resources; educate the signal processing community; and provide a venue for people to interact and exchange ideas. The Signal Processing Society is a dynamic organization that is the preeminent source of signal processing information and resources to a global community. We do this by: being a one-stop source of signal processing resources; providing a variety of high-quality resources to a variety of users in formats customized to their interests; adapting to a rapidly changing technical community; and being intimately involved in the education of signal processing professionals at all levels.

About the IEEE Technology and Engineering Management SocietyIEEE TEMSencompasses the management sciences and practices required for defining, implementing, and managing engineering and technology. Specific topics of interest include, but are not limited to: technology policy development, assessment, and transfer; research; product design and development; manufacturing operations; innovation and entrepreneurship; program and project management; strategy; education and training; organizational development and human behavior; transitioning to management; and the socioeconomic impact of engineering and technology management.

SOURCE IEEE Computer Society

http://www.computer.org

View post:
Keynotes Announced for IEEE International Conference on Quantum Computing and Engineering (QCE21) - PRNewswire

2021 Thematic Research into Quantum Computing in Oil and Gas – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Quantum Computing in Oil and Gas - Thematic Research" report has been added to ResearchAndMarkets.com's offering.

Quantum computers are machines that use the properties of quantum physics to store data and perform computations. Use cases stretch from improved weather forecasting to cracking the codes used to encrypt all internet messaging. The company (or government) that owns the first at-scale quantum computer will be powerful indeed. Quantum computers are proving extremely difficult to build, and fully-fledged commercial computers are not expected for 10, 20, or even 30 years. However, within the next five to seven years, intermediate quantum computers are likely to become available that can offer a quantum advantage over classical computers in certain optimization applications across, for example, space warfare, logistics, drug discovery, and options trading.

Oil majors ExxonMobil, Total, Shell, and BP, are among the few industry participants to venture into quantum computing. Although these companies intend to use the technology to solve diverse business problems, quantum chemistry is emerging as the common focus area of research in the initial phase.

Scope

Reasons to Buy

Key Topics Covered:

1. Executive summary

2. Trends

3. Timeline

4. Companies

5. Glossary

For more information about this report visit https://www.researchandmarkets.com/r/6z07l1

Read more from the original source:
2021 Thematic Research into Quantum Computing in Oil and Gas - ResearchAndMarkets.com - Business Wire

Tech collaboration enables oil and gas companies to venture into quantum computing to reduce operational costs – World Pipelines

The prevailing industry downturn from COVID-19 has heightened the need for oil and gas companies to reduce operational costs by improving efficiency. Although classical computers are capable enough in delivering efficiency gains, quantum computers and their optimisation algorithms could deliver these gains in a much shorter time, says GlobalData, a leading data and analytics company.

Quantum computers are machines that use the properties of quantum physics to store data and perform computations. Theoretically, these machines can complete a task in seconds that would take classical computers thousands of years. The company (or government) that owns the first at-scale quantum computer will be powerful indeed.

According to GlobalDatas latest report, Quantum Computing in Oil & Gas, full-fledged commercial computers are not expected to be ready for approximately another 20 years. However, intermediate versions would be available within the next five to seven years, offering a quantum advantage over classical computers in optimisation applications across several sectors, including space warfare, logistics, drug discovery, and options trading.

Ravindra Puranik, Oil & Gas Analyst at GlobalData, comments: Oil majors ExxonMobil, Total, Shell, and BP, are among the few industry participants to venture into quantum computing. Although these companies intend to use the technology to solve diverse business problems, quantum chemistry is emerging as the common focus area of research in the initial phase. These majors are seeking to develop advanced materials for carbon capture technologies. This could potentially lower the operational costs of carbon capture and storage (CCS) projects, enabling companies to deploy them on a wider scale to curb operational emissions.

Quantum computing is a very specialised field requiring niche expertise, which is not readily available with oil and gas companies. Hence, they are opting for collaborations with technology payers and research institutions who have expertise in this subject.

Ravindra adds: IBM is at the forefront in providing quantum computing tools to a host of industries, including oil and gas. The company has brought on board leading oil and gas and chemical companies, such as ExxonMobil, BP, Woodside, Mitsubishi Chemical, and JSR, to facilitate the advancement of quantum computing via cross-domain research. Besides IBM, oil and gas companies have also collaborated with other quantum computing experts, including D-Wave, Microsoft, and Atos.

World Pipelines Extreme 2021 issue

The Extreme issue of World Pipelines, published in May 2021, focuses on extreme pipeline design, construction and operation. This years edition includes a keynote article on global pipeline risks from AKE International; technical articles on winter work, pipeline monitoring and remote sensing; plus lots of interesting commentary on the digitalisation of the pipeline sector, and how this will improve safety, efficiency and security

Read the article online at: https://www.worldpipelines.com/business-news/23062021/tech-collaboration-enables-oil-and-gas-companies-to-venture-into-quantum-computing-to-reduce-operational-costs/

View post:
Tech collaboration enables oil and gas companies to venture into quantum computing to reduce operational costs - World Pipelines

New discoveries of rare superconductors may be essential for the future of quantum computing – Illinoisnewstoday.com

Research led by the University of Kent and the STFC Rutherford Appleton Laboratory has discovered a new and rare topological superconductor, LaPt3P. This discovery can be very important for the future operation of quantum computers.

Superconductors are important materials that can conduct electricity without resistance when cooled below a certain temperature, making them highly desirable in societies where energy consumption needs to be reduced.

Superconductors show quantum properties on the scale of everyday objects, are very attractive candidates for building computers that use quantum physics to store data and perform computing operations, and are specific. Much better than the best supercomputers on the task. As a result, leading high-tech companies such as Google, IBM, and Microsoft are in increasing demand for industrial-scale quantum computers using superconductors.

However, the basic unit (qubit) of a quantum computer is extremely sensitive, and quantum properties are lost due to collisions with electromagnetic fields, heat, and air molecules. Protection from these can be achieved by using a special class of superconductors called topological superconductors to create more elastic qubits.

Topological superconductors such as LaPt3P, newly discovered by muon spin relaxation experiments and extensive theoretical analysis, are extremely rare and of great value to the quantum computing industry of the future.

Two different sample sets were prepared at the University of Warwick and ETH Zurich to ensure that their properties are sample- and instrument-independent. Next, muon experiments were performed at two different types of muon facilities. ISIS Pulse Neutron and Muon Source from STFC Rutherford Appleton Laboratory, and PSI from Switzerland.

Dr. Sudeep Kumar Ghosh, Principal Investigator and Lever Hume Early Career Fellow in Kent, said: This discovery of the topological superconductor LaPt3P has great potential in the field of quantum computing. The discovery of such rare and desirable ingredients demonstrates the importance of muon research to the everyday world around us.

###

The paper Chiral singlet superconductivity of weakly correlated metal LaPt3P Nature Communications (University of Kent: Dr. Sudeep K. Ghosh, STFC Rutherford Appleton Laboratory: Dr. Pabitra K. Biswas, Dr. Adrian D. Hillier, University of Warwick-Dr. Geetha Balakrishnan, Dr. Martin R. Lees, Dr. Daniel A. Mayoh; Paul Scherrer Institute : Dr. Charles Baines; Zhejiang University of Technology: Dr. Xiaofeng Xu; ETH Zurich: Dr. Nikolai D. Zhigadlo; Southwest University of Science and Technology: Dr. Jianzhou Zhao).

URL: URL: https: //www.Nature.com /article/s41467-021-22807-8

DOI: https: //Doi.org /10.10.1038 /s41467-021-22807-8

Disclaimer: AAAS and Eurek Alert! We are not responsible for the accuracy of news releases posted to EurekAlert! To contribute to the institution or use the information through the Eurek Alert system.

New discoveries of rare superconductors may be essential for the future of quantum computing

Source link New discoveries of rare superconductors may be essential for the future of quantum computing

Here is the original post:
New discoveries of rare superconductors may be essential for the future of quantum computing - Illinoisnewstoday.com