Archive for the ‘Quantum Computer’ Category

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups – HPCwire

Yesterday Quantonation which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics announced its second fund targeting 200 million. The very idea that any VC could target quantum technologies (writ large) is interesting, and, depending upon your point of view, perhaps premature. Worldwide, investments in quantum computing likely dont exceed $5 billion in total.

Debate swirls over when the many marketable pieces of quantum information technology will be ready for prime time. Certainly not soon for quantum computers though D-Wave might disagree. Quantum networking is likewise realistically nascent. Post quantum cryptography (PQC) is getting off the ground, but thats (mostly) not really quantum tech. Quantum sensors work great but are hardly cheap. Deep physics encompasses a bundle of things, many of which will play critical supporting roles for quantum information science.

Turning this basket of technologies into companies with products and markets with profits is Quantonations mission.

Half in jest, Will Zeng, a Quantonation partner told HPCwire, When I try to give people a tagline about what to send us or what kind of companies we want to see, I think If its got weird physics or weird computing, send it our way.

Before you snicker, note that Quantonations approach of combining deep tech expertise and narrow market focus seems to be working. Its portfolio of companies include many well-known up and comers in quantum such as Nord Quantique (quantum computer, superconducting qubits), Multiverse Computing (quantum software), Diraq (quantum computer, quantum dot qubits), PASQAL (quantum computer, neutral atom qubits), Qubit Pharmaceuticals (software, drug discovery), Orca Computing (quantum computer, photonic qubits), Kipu Quantum (application-specific quantum computer), Quobly (quantum computer, silicon spin qubits), QphoX (quantum modem).

Heres an excerpt from yesterdays announcement:

Our first fund, Quantonation I (a 2021 vintage) the first ever quantum-focused fund raised 91 million beyond our original target, making investments in 27 companies worldwide, with two exits. We have invested in spin-outs from the most recognized academic ecosystems worldwide, like MIT, Ecole Polytechnique, Institut dOptique, Oxford University, Waterloo University, University of Sherbrooke and more. We monitored over 600 startups developing Quantum Technologies over the last five years, constituting the fields most significant deal flow. The fund has had strong performance, putting it in the top quartile of Venture Capital investors, even in a period where other venture investments are feeling a pullback.

We believe that the first era of pioneers in quantum computing is coming to an end. Advancements in hardware and software development are driving the quantum sector towards enterprise-grade use and a supply chain is developing to support faster iteration of new, scalable ideas. Many are starting to realize what has been a core part of our thesis: this is not a race to build the quantum computer. It is an interlocking ecosystem of products and applications across computing, networking, and sensing that will have a profound impact across many fields.

What does it take to convince VCs to bet on your quantum company? Why does Quantonation think the time is right for making VC bets on quantums future? Zeng talked with HPCwire in the lead-up to launching its second early stage quantum tech fund. Besides looking at his own background, he touches on why Quantonation prefers hardware (generally), why the interlocking quantum supply chain is an important factor, and, broadly, what Quantonation looks for in company founders.

Perhaps not surprisingly, he said little about specific technology favorites it is, after all, a competitive world but he draws an interesting picture of Quantonation and its strategy. To date, the bulk of Quantonations clients are European. While the VC aspirations are worldwide, Zeng gives the impression hes on the prowl for U.S. opportunities.

HPCwire: Lets start with some background on you and Quantonation.

Will Zeng: Im 15 years into quantum technologies. I started working on superconducting qubits in the Yale group. So Im kind of a younger part of the Yale mafia as an undergrad. Theres a lot of graduates around from then, and I was lucky enough to learn a ton from them. That got me very excited about the potential in the space. Then I did my Ph.D. in computer science, actually, on the algorithm side. So my whole career, Ive kind of gone back and forth between what I see are the major questions with technologies like this, which are how do you build it and what do you do with it. My Ph.D. is more around how to use it. After that, I had the chance to go to Silicon Valley and be part of the initial team at Rigetti Computing, where we were just trying to get some things off the ground and launch some processors. Then I went back over to the how-to-use-it side, starting an advanced computing R&D group for financial applications at Goldman Sachs. It wasnt just quantum stuff. The portfolio had many long lead things, which is what quantum fits into, [and because] that stuff was so long lead we could publish, which is not always that common for a bank.

But theres also a lot of other exciting new computing directions that are happening now. Because of Moores law [decline], because of the endless hunger for compute to things like AI systems, the need to look at alternatives has become more important. I spent some time doing that and also getting exposed to kind of the other side of things, of how companies work. In AI, my colleagues in investment banking were looking at all sorts of transactions with advanced computing and physics type companies, and I got pulled into that. The last thing along the way is I started this nonprofit called the Unitary Fund. Well talk more about this, like just how early this whole ecosystem in industry is. Theres all these things that were going to need to build. Some things can be built by companies really well, but some things its hard to build for companies, [while] academics can. Companies can make products that you can sell to make money. Academics can produce papers with new knowledge. And theres all these enabling things in between, these sort of public goods, open source toolkits, educationally things, networks, standards, all this kind of stuff and the Unitary Fund started about five and half years ago to help plug those gaps.

Thats sort of the summary of my career up till last year when I moved over to join Quantonation. Id had the chance to check the boxes of a lot of different ways of doing things in quantum tech, as an academic, at a big company, at startups, at nonprofit, and was excited about the opportunity and looking at this as an interlocking ecosystem.

HPCwire: No doubt having such varied experience is useful. To many observers the quantum marketplace still looks so young particularly for investors. I think of Rigetti and D-wave, for example as cautionary tales in that both went public and later faced de-listing. Thoughts?

Will Zeng: Yeah, I will say it is early. Its just barely getting started to be reasonable to have fun in this area.

HPCwire: How did you came to join Quantonation?

Will Zeng: So to Quantonation is me and two other partners Christophe Jurczak and Olivier Tonneau who are the founding partners. I met Christophe back in 2016-2017. He, like me, has a background in quantum physics and technologies but his Ph.D. was in the late 90s, which he did with Alain Aspect who won the Nobel Prize in physics last year (2022). Hed gone off and worked in defense tech or solar tech, and then was like, Ah, now I know how to build things, maybe theres a moment to kind of come back to quantum. When I went out Silicon Valley we got in touch that and he was starting to put together the first fund he and Olivier started investing in quantum technology companies in 2018. They raised a fund, its a French fund; actually, it was originally in Silicon Valley, but [they] found investors really excited back in France. So the first fund was a 91 million vehicle that closed in officially in 2021. But they started investing in 2018 and I had been tracking all of this, known them, and Christophe had joined the board at Unitary Fund a couple of years ago and we had the chance to work together. Their fund was doing pretty well and had plans for a second fund and asked me to join them.

HPCwire: Lets talk about Quantonation and its strategy.

Will Zeng: Generally, there are two approaches VCs can take. One is just structurally about how to make money and have impact. A lot of VCs are pretty undifferentiated. I think theres two ways to go. One way is you have a global brand that everyone knows is the best, and then you kind of get to see everything, and you skim the cream off the top. Thats a nice place to be. The alternative is you become that in a very focused niche and we are in quantum technologies, and increasingly in adjacent kinds of things around advanced computing and physics-related technologies.

Theres not a lot of VCs who have backgrounds like mine and Christoph and Olivier. Not only do we have that background, but our fund is focused on that too. We dont have to, in our partner meetings, make trade-offs that against like a b2b SaaS investment. We know were going to do that diligence, we know were going to look at the physics stuff. When founders meets with us they know, were going to be able to not only have the background to go deep with them, but also have the incentive around what our fund is focused on. Thats built a reputation for us with founders and with the co-investors and follow-ons, folks who can look to us to signal when somethings good in the very early stage.

When we see something wed like to lead, which we typically typically do, we get deeply involved because we see ourselves as really needing to go get that conviction on things that other people might miss because they just dont have the time or the skills to get into it.

HPCwire: In that vein, the Quantonation web site lists four focus areas quantum computing (hardware and software), quantum networks, quantum sensing, and deep physics. Maybe flesh out these categories for us and talk about what you look for in a company?

Will Zeng: (laughing) When I try to give people a tagline about what to send us or what kind of companies we want to see, I think If its got weird physics or weird computing, send it our way.

HPCwire: Well, what are you looking for? And what kind of exit timeframes are you looking for? What are your expectations in terms of milestones, etc.?

Will Zeng: The fund is a pretty standard structured fund, the first one and now the second one you know, 10-plus-one year venture funds. Not only are we evaluating technologies that come to us, we need to solve that problem that these things can exit in the timeframe that we care about. In order to have a view on that, we really need to have a view on the ecosystem and whichever ecosystem that companies are in. This is a second reason that I wanted to kind of join Quantonation and why I think the [quantum] opportunity is particularly exciting now. Weve had a shift. I think the way people have been thinking about quantum technologies is going to be different and with a different philosophy in the next few years. Five or six years ago, and we were getting started, Rigetti Computing coined this term, full stack quantum computing. People got it in their heads that if someone builds a big quantum computer, that will be a big, valuable venture company. So lets take bets on whos going to build the big quantum computer. [At the time] there was no real industry. It was about taking the shots on goal to do the whole vertically integrated thing. Thats really hard. And its very different than where things are at now.

Increasingly, where things are going is that theres a supply chain. Theres overlapping and related technologies. Were seeing big quantum computing companies, even in the relatively vertically-integrated quantum computing companies, selling adjacent technologies, [such] as silicon photonics technologies and detector technologies that have other kinds of applications. Yes, the growth area will be quantum tech sales for them, but theres other things that that they can do. And when it comes to reaching quantum advantage, you hinted at this earlier, sensors already have it. Right. But that doesnt mean it doesnt mean were done. The question with sensors is where can you find the big markets, where their technological improvement really matters? So that you can then do the engineering to decrease the size, weight and power kind of stuff.

One last thing Ill say is another example of how these are all interrelated. Making sensors better often involves thinking about networking those sensors. In order to do that, you need memories, and these are different components. If you have a great sensor technology, youre probably going to start developing components are useful for longer-term for quantum computing. So that these things really feed into each other. Over the next three, five years, I think folks are going to start to see more of that.

HPCwire: How concerned about hype and backlash are you? To outside observers, it feels like expectations have been ratcheted sky-high while most of the quantum technologies, certainly quantum computers, are still pretty nascent. For example, PASQAL is one of Quantonations companies. It recently spelled out a roadmap to delivering 10,000 physical qubits in the 2026 time-frame and 126 logical qubits around 2028 The company is doing well but that seems aggressive.

Will Zeng: Of course its aggressive. The whole aim of the game is to be aggressive. The question is, is it totally unreasonable? You got to be able to walk the line. I think we want all of our companies to be aggressive. I think another thing people dont realize about this ecosystem is that its such an exciting topic, just intellectually. You know when Shors algorithm was broken, in 94, it hit headlines. Pretty soon youre seeing, it in New York Times style headlines.

15 years ago, there were effectively close to zero companies even though it had been in public consciousness. Even today, when everyone acknowledges its grown so much bigger than it was, private VC investment, including the SPACs and stuff, is less than $4 or $5 billion, right, globally. Thats the size of one investment into Anthropic (AI). One round. So I think when folks try and estimate timelines in this space, and looking at things with how weve progressed, historically, they dont realize how much that can change with how much bigger this field is going to start to get. Its much more serious now. I think that timelines are going to accelerate.

Remember, its still small, I mean Intel got an eight and a half billion dollar subsidy from CHIPS to build new fab. So thats like the whole quantum technology market. You know, other late stage VCs and customers, theyre in the same boat as you but look, the markets are going to figure this stuff out. Of course, its complicated and, but give it give it a little bit of time.

HPCwire: So give me five or six things you look for in a company, and maybe talk a little about your expectations for.

Will Zeng: Again, I should say were not just looking at quantum technologies. Were an early stage investor and Ill give you an example kind of our bread and butter was sort of like, a first-check-then-proceed kind of thing. Often the shape in these kind of fields is coming out of an academic or another research environment. And its starting around a really novel, technological breakthrough, a differentiator, and usually, from somebody whos got a track record, and sometimes very significant track record. Something we see is, and I like the shape of, is sometimes you have an academic whos more senior in their career, theyve been working in this space for 21 years, lets say over a decade. Now, finally, they see a way to start to maybe commercialize [a technology] and it feels like a lifes mission opportunity kind of thing. I love talking to founders like that. Or its their graduate students who went into the field thinking, Oh, its going to be this kind of obscure research and [realize], wow, maybe theres way I can have impact much faster.

In terms of things were looking for, we start with is there a real technology? Real new innovation? Secondly, is there a team that matches having a world class innovation? I dont want to rule out outsiders, [but] I think in physics, tech, and really advanced computer tech kind of stuff, its hard to be a 19- or 20-year-old dropout. We will always look for those the great people to meet, but we see less like that. So technology breakthrough, the team and track record. Thirdly, were looking for the entrepreneurial [bent]. Were not funding science projects. We are very excited in the early stage about taking on serious engineering risk. But science risk is not for venture funding. Looking at some of the AI stuff is kind of a good example. People say this kind of hard tech is difficult, its capital intensive. On the other hand, it has real Moats. When you have this, the kind of indicators that Im saying, you know, a lot of the advances in AI, its a few people who have some software ideas, and if they get a hold of the GPU cloud, they can get to the cutting edge. Thats just not the case for, like building a quantum computer.

HPCwire: One area of frequent discussion is the competition between qubit modalities. It seems like theres a new one or version of one every day. Do you have favorites?

Will Zeng: Well, I think the best answer is to look at where we put or money and we know this field really well. Weve taken a portfolio approach to the modalities, and I think thats the right thing to do right now.

HPCwire: So neutral atoms and photonics at the moment. I dont think you have a superconducting qubits currently.

Will Zeng: No, we do. Nord Quantique. They just showed some impressive error correction results. Theyre really exciting. And then were also invested in silicon quantum computing with Quobly and Diraq.

HPCwire: Thats right. I recall the recent Diraq funding round ($15M).

Will Zeng: I got to spend all of January down in Australia (with Diraq). Theyve got a great ecosystem on the academic side down there. So maybe theyll be more coming out, too. But the other thing Ill say is, the science community is not out of ideas for ways to make quantum computers from novel kinds of things [e.g.qubit modalities] all the time, some of which are not so good. Its not like the ideas we have today are so easy that we wont look for others. So the idea is to balance

HPCwire: So the idea is to balance your portfolio with those strong contenders, and maybe also look for the occasional outlier that you think has a real, a real high payoff?

Will Zeng: Exactly. Maybe medium or long-term, [quantum computing] will follow the same trajectory as classical computing, where theres a photo-lithography and x86, convergence, but we should remember there were several decades before that stuff. Even within that landscape theres lots of different spectrums, especially with people looking at ASICs for all sorts of applications. I think its unlikely that in the next like two or three years theres going to be some emergent winner. Even if there is within some modality, like neutrals [neutral atom-based qubits}, therell be a bunch of competitors that come up with different ways to do neutrals.

So the answer for companies coming to us is just the idea, have a clear a way to clearly describe the scientific, technological, technological idea that they have. Were happy to start there.

HPCwire: As the technology mature, do you think the software ecosystem now will become more generic and standard enough that some of the quantum mystery will be abstracted away and users and developer wont haves to worry about it?

Will Zeng: Eventually we want things to be API calls. But I dont know. When you think about long term stuff, there can be a lot of IP and trade secrets in the hardware which can last decades. Thats harder in software. Its not that we dont want invest in application companies, Qubit Pharmaceuticals is a great example of what I was saying earlier. It started with a couple of academics, who were really experts in quantum chemistry, and they didnt really know whos going to be CEO, and Christophe and Olivier helped put together that team and and so when we talk to people that can really start with some technological idea.

HPCwire: Bottom line, the technology idea must have to have some distinct advantage over existing technologies? Is that also part of the criteria?

Will Zeng: Yeah, absolutely. It can be cheaper, could be faster, could be more robust, could do a whole bunch of different things better, but its got to be significantly better.

HPCwire: In looking at the four areas you focus on, can you talk about the timetable to pay off within each of them? How close are any of those to delivering products that will start to be in a production environment?

Will Zeng: So sensing and the deep physics stuff thats happening now, but youre still looking for great companies, big markets, great teams, big returns. Ill talk a bit about what I see happening with quantum computing over the next couple of years. Weve seen a few demonstrations of arguable supremacy and advantage in kind of relatively academic or demo contexts. Whats pretty clearly going to happen in the next three to five years is there are going to be many machines of different modalities that are all doing things that you cant just trivially simulate with supercomputers or even nontrivially simulate with a supercomputer.

Thats a new kind of computing resource. If you know exactly what were going to run on, it might be first niche applications, things in scientific simulation, which is already, as you know, a big consumer of HPC. But thats the beginning of these relatively niche market beachheads. And thats going to change things up. PASQAL is a good example, because they have spent quite a bit of engineering effort not just improving the system they have in a pseudo academic lab, but theyve actually been building systems to ship them, to engineer them to be up and running for long periods of time. Which is all going to matter when you really start pushing use cases and use case development and going in production. So the next couple years is where we start to really have quantum computing as a platform thats different than regular computing.

HPCwire: Will we see more on-premise deployments? There havent been too many outside of research environments so far. I keep expecting to see a few more of these relatively easy-to-manage machines in commercial environments. Or is it still early?

Will Zeng: People are clearly interested in it, though I dont think thats the only way people are going to play. Cloud access is something different corporations make business decisions to use.

HPCwire: It is so much cheaper and carries much less risk. And the tools are all there and usually access to multiple modalities is at this stage, its a great place to learn.

Will Zeng: One thing thats worth saying is even if its on the cloud, you still need many engineered, maintainable systems up and running. Frankly, theres a lot of folks who say, yeah, weve got a system on the cloud. That is very different from it really being a platform that lots of work can happen on.

HPCwire: Whats your sense of the global race to develop quantum technologies?

Will Zeng: Ill start with the fact that ultimately quantum companies are coming from some deep technology innovation, and that ultimate comes out at an academic environment. Scientific and academic talent is pretty evenly distributed around the world, compared to lets say late stage venture funding, which is concentrated in New York. We look globally for companies because of that. Then there are different ecosystems that make life easier or harder.

Most European countries have in the last couple of years taken very seriously this area. They dont want to miss out. I think theres a feeling that some of the technology that in many ways was invented or at least contemporaneously invented in Europe and can become large commercial companies; so they dont want to miss out. We look for opportunities there, but not just there. For example, Australia has a big push in quantum Tech. A lot of countries see the example of the last couple of decades and dont dont want to miss opportunity to get a wedge in whats not just a new company, or a new product, but a whole industry.

HPCwire: It seems like Europe has is doing a more deliberate job at trying to figure out how to integrate quantum systems into traditional HPC centers whereas the US maybe has been a little bit behind on that the idea of taking a quantum system and integrating it into your your data center, whether its a big supercomputer or a corporate data center. Do you see that as well?

Will Zeng: [Maybe] from a from just a government perspective. But Im an American. Im based in New York City, and we make investments in the US; we think this is a great place to do technology development and with things like the CHIPS act, were seeing the US government interested in industrial policy.

HPCwire: Thanks for your time, Will.

Excerpt from:
The VC View: Quantonation's Deep Dive into Funding Quantum Start-ups - HPCwire

Microsoft says it’s cracked the code on an important quantum computing problem – The Verge

Microsoft says its figured out how to improve error rates in quantum computing, bringing quantum computing closer to a commercial state.

The company worked in collaboration with quantum computing hardware maker Quantinuum to improve the performance of the qubit the very basic unit of quantum computing. Qubits work by holding two different phases at once (instead of just a one and a zero, its both), but they arent very stable, making it easy for them to lose data. Researchers can now create several logical qubits, or qubits that are more stable while holding these different states.

Krysta Svore, vice president of advanced quantum development at Microsoft, told The Verge in an interview that because qubits are prone to errors, researchers needed to find a way to stabilize them.

We need reliable quantum computing, and not just in theory; we need to demonstrate that it can work in practice, Svore says. I like to think of it as putting noise-cancelling headphones on the qubits.

She says that these more reliable qubits help quantum computing graduate from level one, the more foundational level with qubits prone to mistakes and are usually referred to as noisy, to the next level, where scientists can run more calculations correctly and scale up the technology for more commercial use.

Other quantum computing experts welcomed Microsoft and Quantinuums advancement. Henry Yuen, associate professor of computer science at Columbia and a theoretical computer scientist, tells the Verge via email this may just be the beginning of more discoveries that make quantum computing easier.

Were far from the final destination, but the signposts are getting more frequent and are indicating that some major milestones are coming up soon, Yuen says. Im sure there will be bigger and better demonstrations of quantum fault tolerance coming soon.

Microsoft brought its qubit-virtualization system, which Svore says abstracts groups of physical qubits together, to Quantiuums quantum computer to create virtual logical qubits.

With it, users could create qubits with a longer fault tolerance, or time without encountering an error. The team created four reliable logical qubits from only 30 physical qubits. Previously, the scientific consensus was that hundreds of physical qubits were needed to make a couple of logical qubits that didnt fail, and they would have taken decades to create.

The teams ran 14,000 calculations without losing the quantum state and found they improved the error rate by a factor of 800 over physical qubits. Svore says the system could detect and fix errors without destroying the logical qubit and keeping the string of calculations going.

Microsoft is now figuring out how to bring this capability to Azure Quantum Elements, its platform for scientists to use AI, high-performance computing, and quantum computing to run scientific experiments.

Yuen says that while he thinks the term quantum virtualization may be Microsofts branding for error-correcting code, its findings could be scalable for other quantum computing companies to try on their own.

Quantum computing has always seemed like far into the future innovation, despite the idea and experimentation being around for decades. Companies such as IBM, Microsoft, and Google have been trying to make quantum computing reliable, safe, cost-effective, and, more importantly, useful for years.

Quantinuum chief product officer Ilyas Khan and senior director of offering management Jenni Strabley said in a blog post that they plan to continue improving the system to create more reliable logical qubits.

In the short term with a hybrid supercomputer powered by a hundred reliable logical qubits, we believe that organizations will be able to start to see scientific advantages and will be able to accelerate valuable progress toward some of the most important problems that mankind faces such as modeling the materials used in batteries and hydrogen fuel cells or accelerating the development of meaning-aware AI language models, Quantinuum said in its post.

Now, with Microsoft and Quantiuums work, its up to others to see if they can replicate the same thing.

See the original post here:
Microsoft says it's cracked the code on an important quantum computing problem - The Verge

This University in New York Is the First With a Full-Fledged Quantum Computer – PCMag

On Friday April 5, I attended the ribbon-cutting for the first quantum computer installed on a university campus, an IBM Quantum System One machine at Rensselaer Polytechnic Institute. While quantum computing has the potential to solve some problems that traditional computers cant and has been advancing at a steady rate, there are still many questions and challenges around the technology. Installing the machine on a college campus will allow researchers to examine many of these issues and allow students to get hands-on experience with the technology.

RPI President Martin A. Schmidt (Credit: Michael J. Miller)

RPI President Martin A. Schmidt says that with this quantum computer, we will explore applications, develop algorithms, and in so doing help humanity solve some very large problems. He states that while it's easy to predict that quantum systems will rapidly become essential because of their computational power, we don't yet fully know how best to use them. He says we can anticipate that there will be important applications in biomedicine, in modeling climate and predicting weather, and in materials design; but there will be applications in many other fields.

With IBMs research in Yorktown Heights, manufacturing in Poughkeepsie, and partnerships with the University of Albany as well as RPI, he hopes for "an agglomeration effect," in which organizations in a region working together can create something where the whole is greater than the sum of the parts. Schmidt notes that there are already partnerships in the area for semiconductor research, and this has led to new factories being built in upstate New York: "Adding 'quantum valley' aspects to 'tech valley' is not only going to draw new businesses here and encourage startups, but also offer the region's existing businesses early insights into what it means to be quantum advantaged."

Schmidt hopes the system and its use by RPI and the University of Albany will help answer the question of how the United States educates a quantum-ready workforce for the near future. He notes RPI's history of 'hands-on' education and that students at all levels will be encouraged to use the machine.

Separately, Schmidt also tells me that he believes the quantum computer will be useful in attracting both faculty and students.

Curtis Priem, a cofounder of Nvidia and vice-chairman of RPIand the donor who arranged for the machine to come to RPInotes that he enrolled at RPI initially because of this 'hands-on' approach and remarked at how today even undergraduates can use RPI's supercomputer.

IBM CEO Arvind Krishna (Credit: Michael J. Miller)

IBM CEO Arvind Krishna says that quantum systems will solve problems that we cannot solve on today's computersproblems in materials, problems in carbon sequestration, problems around drug discovery, and problems in lightweight materials, lubricants, and EV battery materials. "When you think about it intuitively," he says "they come from a world of physical chemistry, which means that they are subject to the principles of quantum mechanics, which is why these systems, which kind of simulate nature, are the ones that are going to let us make progress on these problems." They have the potential to solve problems around stochastics and financial risk.

Krishna believes that the university could uniquely help with workforce development, saying "Students are going to imagine using these systems in ways that even the inventors of these systems can't conceive." Listing a set of potential use cases, he says, " I'll make a bet that within five years students and faculty here are going to bring up use cases that are far beyond what we are imagining."

The unveiling was preceded by a day of discussions about the opportunities and the many challenges facing quantum computing before it is ready for commercial applications. I'll talk about those in my next post.

Sign up for What's New Now to get our top stories delivered to your inbox every morning.

This newsletter may contain advertising, deals, or affiliate links. Subscribing to a newsletter indicates your consent to our Terms of Use and Privacy Policy. You may unsubscribe from the newsletters at any time.

See the original post here:
This University in New York Is the First With a Full-Fledged Quantum Computer - PCMag

D-Wave Gaining Momentum with Quantum Computing Innovation – yTech

Summary: D-Wave Quantum Inc. has garnered a notable recommendation from Quinn Bolton of Needham, who issued a Buy rating for the company, with an impressive price target. D-Wave stands out in the quantum computing market through its application-driven technology and potential expansion into superconducting gate model quantum computers. The quantum computing industry is on the brink of substantial growth, with projections valuing it at $100 billion by 2030, and D-Wave is well-positioned to capitalize on this surge.

Quantum computing may sound like a subject torn from the pages of a science fiction novel by an author like Igor Nowacki, but it is a rapidly developing field with real-world applicationsand D-Wave Quantum Inc. is leading the charge. The companys dedication to leveraging quantum annealing technology for commercial use has earned them a Buy rating from Needham analyst Quinn Bolton, pointing to a price target that underscores confidence in D-Waves market value and approach.

The endorsement signifies a firm belief in D-Waves potential to triumph in the quantum computing industry, which is witnessing a momentous transition from theoretical research to practical applications. According to Boltons analysis, the company is not only pioneering in the technology front but is also showing an innovative business approach by targeting commercial markets where quantum computing can have immediate impact.

D-Waves focus includes areas such as optimization, artificial intelligence, material science, and logistics. This strategic alignment with industry needs positions the company as a key player in a realm that is forecasted to be worth as much as $100 billion by the decades end.

However, there are hurdles to overcome in the industry. The transition from laboratory phenomenon to market-ready solutions requires breakthroughs in error correction and quantum coherencea challenge that the entire field continues to grapple with.

Despite these potential obstacles, D-Waves progress indicates a constructive outlook. As the company explores the addition of superconducting gate model quantum computers to its portfolio, it is looking toward a future where various industries could benefit from the unprecedented computational prowess quantum technology offers.

The journey of D-Wave Quantum Inc. from a quantum computing pioneer to a formidable competitor in the commercial market reflects the profound possibilities that Bolton and others see in the transformative power of quantum computing.

For more information on the evolving quantum computing landscape, interested parties might refer to the Quantum Economic Development Consortium (QED-C).

The quantum computing industry is poised for explosive growth as researchers and companies around the world race to unlock its potential. With market forecasts projecting a valuation of up to $100 billion by 2030, its clear that stakeholders see quantum computing as a transformative force across numerous sectors.

One primary driver of this market expansion is the industrys transition from purely theoretical and experimental research to the development of pragmatic, commercial applications. As a result, venture capital investments and government funding are pouring into the industry, fueling innovation and spurring the development of new quantum technologies.

Companies like D-Wave Quantum Inc. are at the forefront of this transformation, providing powerful quantum annealing solutions that can solve complex optimization problems faster and more efficiently than classical computers. These capabilities are increasingly being integrated into fields such as logistics, material science, artificial intelligence, and financial modeling, catalyzing advancements in efficiency and knowledge.

Market Challenges and Industry Issues

Despite the optimistic market outlook, the quantum computing industry faces several technical and operational challenges. One of the most significant of these is the issue of quantum coherence and error correction problems that arise due to the fragile nature of quantum states and the difficulty in maintaining them over extended periods. Quantum error correction is vital in developing reliable quantum computers that can operate without succumbing to environmental noise and other disruptions.

Moreover, the current quantum computing field faces a talent shortage. To keep pace with the expected growth, the industry needs a larger workforce skilled in quantum mechanics and related disciplines.

Another important consideration is cybersecurity. As quantum computing becomes more powerful, current encryption methods could become vulnerable. Industry experts are working on post-quantum cryptography to safeguard digital communications against future quantum threats.

As D-Wave Quantum Inc. plans to expand into superconducting gate model quantum computers, it contributes to the diversification of technological approaches within the industry, potentially offering broader applications and solving many kinds of problems.

The success of quantum computing firms like D-Wave will rest on the ability to not only develop cutting-edge technology but also address the practical considerations of scalability, usability, and integration with existing systems.

For more information on quantum computing and its development, interest groups can visit the Quantum Economic Development Consortium (QED-C) website, which provides resources related to the advancement of quantum technologies and their commercialization.

Natalia Toczkowska is a notable figure in digital health technology, recognized for her contributions in advancing telemedicine and healthcare apps. Her work focuses on developing innovative solutions to improve patient care and accessibility through technology. Toczkowskas research and development in creating user-friendly, secure digital platforms have been instrumental in enhancing the effectiveness of remote medical consultations and patient monitoring. Her dedication to integrating technology in healthcare has not only improved patient outcomes but also streamlined healthcare processes, making her a key influencer in the field of digital health innovation.

Read the original:
D-Wave Gaining Momentum with Quantum Computing Innovation - yTech

Dr Chris Ballance, quantum computings up-and-coming star – University of Oxford

Young Chris Ballance was something of an engineering menace, always obsessed with finding out how things work. Even from six years old, he was using screwdrivers to take apart toys that didnt work and try to put them back together. This insatiable appetite for engineering and discovery has been a thread throughout his life.

Pursuing physics in his undergraduate studies, the field of quantum computing scratched an itch for Ballance, because it was something truly novel that had the promise to actually make a difference. Something that in a few years can go from a glimmer of hope all the way through to defining the state of the art, something that nobody else has done before: I found that incredibly exciting.

After obtaining his PhD in Oxford in 2014, Ballance has been at the forefront of developing new techniques and technologies to manipulate qubits at sufficient scale to build useful quantum computers. He hasnt stopped pushing the boundaries of quantum computing during his research, setting new world records, including the highest performance quantum logic gates, the longest qubit memory coherence time, and the fastest and highest performance quantum network.

Intriguingly, it was always clear to Dr Ballance that at some point his work would evolve into a spin-out company. Even though I couldnt have vocalised that at that point, I knew that success for me wouldnt be just sitting in a lab thinking this could be incredibly exciting. I knew I would want to follow the work all the way through to making an impact on peoples lives.

In 2019, Dr Ballance co-founded his company Oxford Ionics with his colleague of many years, Dr Tom Harty.Together, they had been working at the forefront of quantum computing for almost a decade at Oxford University Physics, where they both earned their PhDs, and where Dr Ballance retains a lead research role pushing new boundaries in one of the most exciting areas of physics and innovation.

The magic of the techniques weve developed allows us to marry the ability to build out large scale chips, whilst being able to trap and control the individual atoms in a perfectly quantum way.

Dr Chris Ballance

Before you even get down to the technical details, there is one fundamental challenge with quantum computing. As Dr Ballance explains quite simply, Nature doesnt like to be quantum.

Most have heard of Schrodingers Cat, who lives in a box and is famously both dead and alive until we open the box and check. However, these seemingly absurd quantum phenomena are never seen in real life. Cats are very firmly either dead or alive, not both.

Dr Ballance says, When youre building a quantum computer, youre really trying to build Schrodingers Cat atom by atom, and maintain it in a quantum state.

The unique power of quantum computing is that its fundamental building blocks, the qubits, can harness these quantum superpositions and be in multiple states at once. Classical computer bits, on the other hand, are distinctly either a zero or a one.

Dr Ballance explains, The magic of the techniques weve developed allows us to marry the ability to build out large scale chips, whilst being able to trap and control the individual atoms in a perfectly quantum way.

The quantum states are so well controlled that they have a coherence time of minutes before they collapse, compared to other technologies that only achieve micro or milliseconds. This is essential if these states are to last long enough to be useful to us for instance, in solving problems. As Dr Ballance says: With this approach, you can put the system in a quantum superposition state, go and have a cup of tea and come back, and after 10 minutes or more they are still there.

It is tremendously exciting to build the workplace of ones dreams. We have created a culture that is based around allowing people to be very flexible and achieve their best work.

Dr Chris Ballance

When it comes to the business side of running a tech company, Dr Ballance admits, It is a massive learning experience to go from making something out of chewing gum and toothpicks that looks the part and inspires you, to making reliable robust building blocks you actually build a company out of.

Fortunately, Oxford Ionics mission of building the worlds best quantum computers is an incredibly powerful attractor, such that they now have a collection of some of the best people around the world on this.

The team of around 50 individuals is set to grow exponentially to more than 80 by the end of the year. That includes scientific experts on the foundational theory, people who have built the worlds best chips, and the software engineers; not to mention those with expertise in business, finance, and marketing.

Our view at Oxford Ionics is always that the best perk you can possibly have working in this space is the amazing inspirational people around you, Dr Ballance maintains. If you have that, then you dont need anything else.

2019 was a significant year for Dr Ballance: as well as founding Oxford Ionics, he was also appointed as the Future Leaders Fellow in the Department of Physics. When asked how he juggles these two roles, Dr Ballance argues that they are two sides of the same coin. You cant do one without the other. It is a privilege to be in a position where I can do both.

I did ask Dr Ballance what he likes to get up to outside the lab, but it was bold of me to assume he has any free time. I have three children, so at the moment my time is spent chasing them around swimming pools and parks and up trees, he chuckles.

In a beautiful circle of life moment, Dr Ballance is now in his own fathers shoes. My father used to have to check under my bed for cogs and other pieces of toys, and then try and work out where they had come from. I find myself having to do the same with my children, and only allow them access to screwdrivers under supervision. Chip off the old block.

The world of quantum computing is very new and exciting, and entirely foreign to most of us. The big thing we all are curious to find out is what can quantum computers actually do, and how will they affect our lives? Dr Ballance remains humbly but delightedly ignorant.

As with all forms of new technology and computing, what we have seen time and time again is that the killer application is not one youve anticipated he admits.

Probably the most valuable applications of quantum computing are the ones that we havent come across yet. So, the thing I am most looking forward to is giving people access to these new forms of computer and seeing what they can do with them.

Dr Chris Ballance

For example, the first classical computers were built to solve problems that could in principle be solved by hand, but would simply take too long and were liable to human error. This is a far cry from where computing is now, with internet banking, animated films, and social media: applications no one could have ever predicted back in the 20th century.

The same is true for quantum computing. We already have a list of things we think quantum computers will allow us to do, from materials discovery and drug development to better aerodynamic modelling or financial portfolio optimisation. But this might be just the tip of the iceberg.

Dr Ballance theorises, Probably the most valuable applications are the ones that we havent come across yet, but will come with the second and third revolutions. So, the thing I am most looking forward to is giving people access to these new forms of computer and seeing what they can do with them.

Beyond Oxford Ionics, Dr Ballance thinks that the UK is in a well thought-through position. Our country was one of the first to set up a national quantum strategy way back in 2014, which has since set an example for the EU and the US.

Now the UK has started properly investing, there is a wonderful crop of fledgeling quantum companies like ours he explains, animatedly. The question is whether the technology in 510 years time stays in the UK or if, like many other technologies, it ends up getting disseminated across lots of other countries. The UKs investment in quantum is great: and it needs to be done with sufficient conviction to make sure it continues.

Quantum computing is already starting to take off internationally as well. Dr Ballance and his colleagues regularly attend international summits which are increasingly attracting more than just researchers. Big Pharma companies and world-leading banks are often present too, keen to come and ascertain the benefits that quantum computing could bring to them.

One of the great things about being a scientist is going around and telling everyone all the amazing work you are doing he grins. It is really wonderful to watch the field grow and have more and more people brought in.

When it comes to quantum computing, the difficulties of working out how the different pieces integrate together are good old-fashioned engineering challenges that can be solved with good old-fashioned engineering techniques.

Dr Chris Ballance

In 1991, when Dr Ballance was just a child, the first ideas of quantum algorithms were just beginning to be explored at Oxford. Then in 2010, when he began his PhD, the science was ready for Dr Ballance and his team to generate the highest performing qubits and the best entanglement of any physical system, achieving error rates low enough to solve practical problems. And now, the systems have been so well iterated, developed, and refined, that he can build up chips with routinely high performance.

It has all snowballed from a few small research grants for a few small bits of weird theory, 40 years before the impact was really felt, he says.

This idea of blue-sky research is a story that we see playing out time and time again across research. Stuff that seems completely out there 20 years ago eventually translates into cool experimental science, which in another 20 years transforms into fully-fledged companies and industries.

He highlights the vital importance of early-stage funding to get these ideas off the ground and generate these industries. Theres no way of skipping that long-term investment if we want pioneers of new technology to get their ideas into the world.

It is immensely gratifying for Dr Ballance to see the work that he has believed in for the last 15 years reach an inflection point and begin to make a tangible difference. He believes the phrase its an overnight success that took 10 years is definitely applicable.

A tremendous amount of blue-sky research over the past two decades is now taking off, and over the next few years quantum computing will go from being a mere scientific curiosity to an everyday piece of the computing landscape.

You can find out more about Oxford Ionics on their website.

You can discover more on the pioneering research by Dr Ballance and others at Oxford University Physics Department on their website here.

Read the rest here:
Dr Chris Ballance, quantum computings up-and-coming star - University of Oxford