Archive for the ‘Quantum Computer’ Category

NIST will fire the starting gun in the race to quantum encryption – Nextgov/FCW

As the National Institute of Standards and Technology is slated to soon debut the first round of encryption algorithms it has deemed suited for the potential arrival of a viable quantum computer, experts have advice for organizations: know your code.

The need for strong cryptographic governance ahead of migrating digital networks to a post-quantum standard will be a major component to updated cybersecurity best practices, as both public and private sectors begin to reconcile their network security with new algorithmic needs.

Matthew Scholl, the chief of the computer security division in the National Institute of Standards and Technologys Information Technology Laboratory, said that understanding what a given organizations security capabilities are will offer insight into what aspects of a network should transition first.

Deep understanding of what current encryption methods do and precisely where they are will be a fundamental aspect of correctly implementing the three forthcoming quantum-resistant algorithms.

With that information, you should then be able to prioritize what to change and when, and you should plan for the long term changes and updates going forward, Scholl told Nextgov/FCW.

Scott Crowder, vice president for IBM Quantum Adoption and Business Development, echoed Scholls points on creating a cryptographic inventory to ensure the algorithms are properly configured. Crowder said that while overhauling encryption code is a comprehensive transition, understanding what needs to change can be difficult based on who wrote the code in the first place.

It's a painbecause it's actually at two levels, Crowder told Nextgov/FCW. First you get all the code that you've written, but then you've got all the rest of your IT supply chain that vendors provide.

Based on client conversations, Crowder estimates that 20% of the transformation problem hinges on an entitys internal code, while the remaining 80% is ensuring the vendors in their supply chains have correctly implemented NISTs new algorithms.

From our experience, and doing some work with clients, typically for one application area, it's like three to six months to discover the environment and do some of the basic remediation, he said. But, you know, that's like a small part of the elephant.

In addition to creating a comprehensive cryptographic inventory that can determine which code should be updated, Scholl said that cybersecurity in a quantum-ready era needs to be versatile.

You need to build your systems with flexibility so that it can change, he said. Don't put something that's [going] to be the next generation's legacy. Build something that is agile and flexible.

The debut of the three standardized post-quantum algorithms ML-KEM, CRYSTALS-Dilithium, and Sphinx Plus will enable classical computers to keep data encrypted against a future fault-tolerant, quantum-powered computer. During their implementation processes, Scholl said that organizations need to both continue monitoring the configuration of the newly implemented algorithms as well as consistently test for vulnerabilities.

Scholl said that the fourth algorithm, Falcon, which was selected as a winning algorithm in 2022 along with the other three, will be released for implementation later this year.

Despite the milestone in quantum cryptography readiness, Crowder notes that this is just the beginning for a new era of cybersecurity hygiene.

You can think of the NIST standardization as basically the starting gun, he said. But there's a lot of work to be done on taking those standards, making sure that all the open source implementations, all the proprietary implementations get done, and then rippling through and doing all the hard work in terms of doing the transformation upgrade.

See the article here:
NIST will fire the starting gun in the race to quantum encryption - Nextgov/FCW

Quantum Computing is Becoming More Accessible as Costs Drop & Cloud Access Expands Dr. Mark Jackson – The Quantum Insider

Dr. Mark Jackson, a leading expert in quantum computing and Senior Quantum Evangelist at Quantinuum, recently shared his views on the imminent impact of quantum technology. With a PhD in superstring theory and cosmology, Jacksons extensive background positions him as a crucial voice in the quantum revolution. Here, he offered his vision for the future and the necessity of early investment in quantum computing.

The market potential for quantum computing isnt just in the billions; its believed that it will be in the trillions, Jackson said.

Jackson stressed the importance of early adoption.

It takes time to write the software, to understand how this works, to understand how it affects your industry. Its not simply a matter of turning on a dime once you see the headlines about quantum being relevant, he said. The complexity and novelty of quantum computing demand a proactive approach to ensure organizations are ready to leverage its capabilities.

Explaining the fundamental difference between quantum and classical computers, Jackson noted: A normal computer is based on bits which are zero or one. A quantum computer is based on quantum bits, or qubits, which can be zero and one at the same time. This property enables quantum computers to consider multiple solutions simultaneously, vastly increasing computational power. You get this exponential scaling of possible solutions that a quantum computer would consider, he added.

Jackson called attention to some key applications where quantum computing excels.

One thing that quantum computers are very good at is chemistry, being able to do material science calculations, trying to simulate molecules and understand how theyll behave, he said. Personalized medicine is another promising field, as quantum computing could significantly reduce the time and cost required to develop new drugs. With a quantum computer, we think that we could speed this up and make it much more efficient, Jackson explained.

Cybersecurity is also a critical area of concern and opportunity. Jackson pointed out: Quantum computing is relevant to hacking or cybersecurity. Now that quantum is becoming pretty powerful, a lot of governments and communications companies are very concerned about this. Companies like Apple and Zoom have already started upgrading their cybersecurity measures to protect against potential quantum threats.

Despite its potential, Jackson acknowledged the current limitations of quantum technology.

Unfortunately, its very expensive to build a quantum computer right now, and so its only really very developed countries that are investing in this, he said. However, he remains optimistic about the future accessibility of quantum computing. The price of quantum computing is coming down, and a lot of people have access to it over the cloud.

Jackson dispelled the common misconception that quantum computing is still decades away.

By far the biggest misconception that I come across is that people think that quantum computing might be relevant in 20 years, he said. He stressed that significant breakthroughs have occurred in the past decade, rapidly advancing the field. Quantum has increased its performance by about a factor of ten every year, Jackson noted, while predicting that practical applications of quantum computing will emerge within the next two years.

Jackson urges organizations to begin investing in quantum technology now to stay ahead.

The organizations which will take most advantage of this are those who have already begun. It really is essential that if youre not already investing in quantum, you start developing expertise and investing in this now, he advised. The future of quantum computing promises to revolutionize various industries, and early preparation will be key to capitalizing on its transformative potential.

Featured image: Credit: PNNL

See the original post:
Quantum Computing is Becoming More Accessible as Costs Drop & Cloud Access Expands Dr. Mark Jackson - The Quantum Insider

Register to host an event at Qiskit Fall Fest 2024! – IBM

Key dates for prospective event hosts:

August 7: Deadline to sign up for event host informational sessions and Qiskit Fall Fest mailing list

August 15: Informational session

August 16: Informational session

August 22: Deadline for event host applications

August 27: Application decisions to be announced

September 3: Qiskit Fall Fest 2024 event lineup to be announced to the public

October-November: Qiskit Fall Fest events take place

Since 2021, the Qiskit Fall Fest has brought together quantum enthusiasts of all backgrounds and experience levels for a worldwide celebration of quantum technology, research, and collaboration. Spearheaded primarily by student leaders and taking place on university campuses all around the globe, Qiskit Fall Fest gives participants a unique opportunity to engage with the Qiskit community and even get hands-on experience with real quantum computers. Now, the event series is gearing up to return for its fourth annual installment, which will kick off in October.

Qiskit Fall Fest is a collection of quantum computing events that invites students, researchers and industry professionals around the world to participate in a wide array of quantum-themed activities, ranging from quantum challenges, hackathons, and coding competitions to workshops, social events, and more. With each Qiskit Fall Fest, we partner with a select group of university students and other volunteer hosts to help them plan and run the global roster of Fall Fest events. This year's event theme, World of Quantum, celebrates the international scope of the event series and the rapid growth of the global quantum community.

Last years Qiskit Fall Fest engaged over 4,000 participants with the help of 95 event hosts all working alongside IBM Quantum to grow their local quantum communities. We hope to see even more participants in 2024!

Were looking for volunteers located all around the world to host their very own events as part of the Qiskit Fall Fest lineup. Anyone who has a passion for quantum computing is eligible to host a Fall Fest event. (See the next section of this post for more details on host eligibility.)

Interested in joining the fun? Click this link to register for one of the Qiskit Fall Fest informational sessions well be holding this summer for prospective event hosts.

The informational sessions will take place on Thursday, August 15 and Friday, August 16, and will give prospective event hosts valuable insights into the requirements and time commitment involved with running a Qiskit Fall Fest event.

If youd like to participate in Qiskit Fall Fest but dont plan on hosting an event, you can also use the same registration link to sign up for the Qiskit Fall Fest mailing list, which will keep you up-to-date with all the latest details on this years events.

Please submit all registrations for the Qiskit Fall Fest informational sessions and/or mailing list by Wednesday, August 7.

After the informational sessions, prospective event hosts will submit applications detailing their background and expertise in quantum computing. Applications will be due the week after the information sessions, and decisions will be announced the week after that. Be sure to check the sidebar at the top of this page for all key dates.

The full roster of Qiskit Fall Fest 2024 events will be announced to the public in early September, and the events themselves will take place in October and November.

Most Qiskit Fall Fest events take place on university campuses and are led by university students though there are certainly some exceptions. Weve intentionally put students at the forefront of the Qiskit Fall Fest event series since its initial launch in 2021. Thats because we believe the student leaders of today will be the quantum industry leaders of tomorrow. With the Qiskit Fall Fest, we aim to give students an opportunity to put their leadership skills to the test and help grow the quantum community using resources and guidance from IBM.

At the same time, anyone can participate in and even host a Qiskit Fall Fest event. Dont have access to a university campus? No problem! In the past, weve had high school students, recent graduates, and even industry professionals host events that take place virtually and in other appropriate settings. Just be sure to register for the informational sessions by August 7 and submit your idea for an event by August 22. If its a fit, well work with you to bring it to life. (Please note: Only those who attend one of the informational sessions will receive access to the event host application.)

Click here to register for the mailing list and informational sessions.

Read more here:
Register to host an event at Qiskit Fall Fest 2024! - IBM

The Novo Nordisk Foundation Believes Quantum Computing Poised to Revolutionize Healthcare & Drug Discovery – The Quantum Insider

The Novo Nordisk Foundation, under the leadership of Senior Vice President Lene B. Oddershede, is leading efforts to harness quantum computing for groundbreaking advances in life sciences and healthcare. In a recent interview, Oddershede shared her thoughts into the foundations ambitious quantum initiatives and their potential to transform medical research and drug discovery.

Oddershede talked about the foundations long-term commitment to quantum technology.

We understand we are in it for the long haul, she began. It does come tomorrow that we will have a quantum computer that is capable of solving real problems in the Life Sciences. We need to be patient, maybe for another ten years or so and thats actually totally fine. This approach aligns with the foundations experience in pharmaceutical development, where timelines often span decades.

The potential applications of quantum computing in life sciences are vast. Oddershede explained: I strongly believe that quantum computing is going to be such a powerful tool that it will help us get maybe even an AB initial understanding of how biomolecules work, maybe of how a cell works with the lipids with everything and that will give us an understanding of such fundamental and basic processes that will really impact a number of different areas.

Oddershede stressed the foundations long-term commitment to quantum technology.

One specific area where quantum computing could make a significant impact is in understanding complex enzymatic processes.

If you take nitrogenase, for example, its the enzyme that converts nitrogen into ammonia, a process essential for feeding the world. Industrially, this is done through the Haber process, which is extremely energy-consuming, said Oddershede, providing an example, potentially leading to more efficient and environmentally friendly ammonia production.

To advance quantum computing research, the Novo Nordisk Foundation has launched a major initiative. Oddershede revealed: The largest initiative we have supported to date is the NOA NIS Foundation quantum computing program, which we have funded with 200 million euros. The purpose of the program is to develop fault-tolerant quantum computing.

This program aims to achieve a trillion error-free operations, a significant milestone in quantum computing capabilities.

Recognizing the global nature of quantum research, Oddershede underlined the importance of international collaboration.

We need to collaborate with trusted partners, so we need to identify trusted partners and then we need to enter into a really deep collaboration with these partners, she said. The foundation has established partnerships with academic institutions worldwide and industry leaders like NVIDIA to foster innovation in quantum computing.

Looking to the future, Oddershede shared her vision for quantum computings impact.

My highest hope is actually that we will participate in and enable actually to accelerate the development of fault tolerant quantum computing for the benefit of all humankind and of the planet, she said.

She emphasized the importance of ensuring that quantum technology benefits society broadly, rather than being monopolized by a few large tech companies.

The Novo Nordisk Foundations initiatives promise to play a crucial role in unlocking its potential for life sciences and healthcare. With a focus on collaboration, long-term investment and societal benefit, the foundation is helping to pave the way for a future where quantum computing could revolutionize our understanding of biological processes and accelerate medical breakthroughs.

See the original post:
The Novo Nordisk Foundation Believes Quantum Computing Poised to Revolutionize Healthcare & Drug Discovery - The Quantum Insider

Fujitsu and ANU to bring world-class quantum computing to Australia – Fujitsu

Memorandum of Understanding to drive local innovation and talent development Fujitsu Limited

Kawasaki and Sydney, July 4, 2024

Fujitsu today announced that Fujitsu Australia Limited and The Australian National University (ANU) in Canberra concluded a memorandum of understanding (MoU) to ensure that industry and government professionals, researchers, academics, and students in Australia will soon have access to a world-class quantum research facility. The agreement will see the two organizations partner to establish a center for quantum research, with ambitions to build an onsite quantum computer.

Aligning with Australias National Quantum Strategy to invest in, connect and grow Australias quantum research and industry to compete with the worlds best, the MoU sets out a long-term vision for how Fujitsu will partner with one of Australias leading tertiary educators to capitalize on the future opportunities and applications of quantum technologies for the benefit of local organizations and the global community.

Graeme Beardsell, EVP, Chief Executive Officer Oceania, at Fujitsu said: "At Fujitsu, we're innovating for the future of computing. Our investment in quantum research, coupled with strategic collaborations including with ANU, puts us at the forefront of the global race to develop the world's first fault-tolerant quantum computer. This is about more than just technology; it's about unlocking the next wave of innovation.

"Australia's commitment to quantum leadership is clear, and Fujitsu is playing our part. We're not just developing these technologies; we're sharing them, fostering collaboration, and believing that the next quantum breakthrough will come from a global, connected network of brilliant minds who are focused on developing technology for good."

As part of the collaboration, Fujitsu will provide ANU researchers and academics with access to Fujitsus quantum systems and simulators in Japan. To drive further innovation, Fujitsu, through collaboration with RIKEN, plans to release a 256-qubit quantum computer in March 2025 and a quantum computer with as many as 1000 qubits in fiscal year 2026 (1), cementing ANUs ongoing access to the latest in cutting-edge quantum technology.

Under the new collaboration, ANU will develop teaching and training modules based around access to Fujitsus quantum technologies to further inform the overall approach to research into quantum computing.

In addition to the exchange of knowledge, the endeavor will also aim to set up an on-site quantum computer at ANU to help local researchers, and government and industry professionals to develop expertise in quantum computers.

The on-site quantum computer will provide Australian professionals with access to local emerging technologies that will enable them to conduct advanced research in fields including cryptography, material science, and quantum simulations.

Professor Lachlan Blackhall, Deputy Vice-Chancellor (Research and Innovation) at The Australian National University said: This collaboration with Fujitsu complements and builds on the ANU mission to further higher education on emerging technologies including quantum computing and will help to foster the growth of a talented pool of quantum computing professionals in Australia.

ANU is excited to see this collaboration with Fujitsu, which promises to build on the Universitys strengths in quantum optical physics and quantum algorithms. More broadly, this dynamic collaboration and the work taking place as part of it will help grow the nations commitment to fundamental quantum physics, which is absolutely vital if we are to harness the incredible potential of research and apply it to real-world opportunities for the quantum world.

In addition to Fujitsus plans over the next two years to develop a 256-qubit and 1,000-qubit superconducting quantum computer with RIKEN, Fujitsu has developed quantum technologies and expertise including:

The Sustainable Development Goals (SDGs) adopted by the United Nations in 2015 represent a set of common goals to be achieved worldwide by 2030. Fujitsus purpose to make the world more sustainable by building trust in society through innovation is a promise to contribute to the vision of a better future empowered by the SDGs.

Fujitsus purpose is to make the world more sustainable by building trust in society through innovation. As the digital transformation partner of choice for customers in over 100 countries, our 124,000 employees work to resolve some of the greatest challenges facing humanity. Our range of services and solutions draw on five key technologies: Computing, Networks, AI, Data & Security, and Converging Technologies, which we bring together to deliver sustainability transformation. Fujitsu Limited (TSE:6702) reported consolidated revenues of 3.7 trillion yen (US$26 billion) for the fiscal year ended March 31, 2024 and remains the top digital services company in Japan by market share. Find out more: http://www.fujitsu.com.

The Australian National University (ANU) is unlike any other university in Australia. Founded in 1946, in a spirit of post-war optimism, our role was to help realise Australia's potential as the world recovered from a global crisis. That vision, to support the development of national unity and identity, improve our understanding of ourselves and our neighbours, and provide our nation with research capacity amongst the best in the world, and education in areas vital for our future, has been our mission ever since.

Fujitsu Limited Public and Investor Relations Division Inquiries

All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this press release is accurate at time of publication and is subject to change without advance notice.

More here:
Fujitsu and ANU to bring world-class quantum computing to Australia - Fujitsu