Archive for the ‘Quantum Computing’ Category

Call for Papers: ASCR Workshop on Quantum Computing and … – insideHPC

May 17, 2023 The Advanced Scientific Computing Research (ASCR) program in the US Department of Energy (DOE) Office of Science is organizing a workshop to identify priority research directions in quantum computing and networking to better position ASCR to realize the potential of quantum technologies in advancing DOE science applications.

Key deadlines:

DOE point of contact: Tom Wong (Thomas.Wong@science.doe.gov)

The mission of the ASCR is to advance applied mathematics and computer science research; deliver the most sophisticated computational scientific applications in partnership with disciplinary science; advance computing and networking capabilities; and develop future generations of computing hardware and software tools in partnership with the research community, including U.S. industry. ASCR supports computer science and applied mathematics activities that provide the foundation for increasing the capability of the national high-performance computing ecosystem and scientific data infrastructure. ASCR encourages focus on long-term research to develop intelligent software, algorithms, and methods that anticipate future hardware challenges and opportunities as well as science needs (http://science.energy.gov/ascr/research/).

ASCR has been investing in quantum information science (QIS) since 2017. ASCRs QIS investments span a broad scope of research in quantum computing and quantum networking with investments in quantum algorithms and mathematical methods; the creation of a suite of traditional software tools and techniques including programming languages, compilers, and debugging; quantum edge computing; and quantum applications such as machine learning. ASCR is also funding quantum hardware research and quantum testbeds: two quantum computing testbeds are available at Sandia National Laboratories (SNL) and at Lawrence Berkeley National Laboratory (LBNL) to external collaborators, and two quantum internet testbeds are being developed by LBNL and by a collaboration between Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL). More information about ASCR QIS investments can be found here:https://science.osti.gov/Initiatives/QIS.

ASCR research into quantum computing and quantum networking technologies is making rapid progress, and specialized systems are now commercially available. It is important for ASCR to understand the potential of these new and radically different technologies relative to conventional computing systems and for DOE-relevant applications. However, ASCR is not interested in exploring the underlying, specific device technologies at this workshop. This workshop will focus on the following two exploration areas:

The workshop will be structured around a set of breakout sessions, with every attendee expected to participate actively in the discussions. Afterward, workshop attendees from DOE National Laboratories, industry, and academia will produce a report for ASCR that summarizes the findings made during the workshop.

Invitation

We invite community input in the form of two-page position papers that identify and discuss key challenges and opportunities in quantum computing and networking. In addition to providing an avenue for identifying workshop participants, these position papers will be used to shape the workshop agenda, identify panelists, and contribute to the workshop report. Position papers should not describe the authors current or planned research, contain material that should not be disclosed to the public, nor should they recommend specific solutions or discuss narrowly focused research topics. Rather, they should aim to improve the communitys shared understanding of the problem space, identify challenging research directions, and help to stimulate discussion.

One author of each selected submission will be invited to participate in the workshop.

By submitting a position paper, authors consent to have their position paper published publicly.

Authors are not required to have a history of funding by the ASCR Computer Science program.

Submission Guidelines

Position Paper Structure and Format

Position papers should follow the following format:

Each position paper must be no more than two pages including figures and references. The paper may include any number of authors but contact information for a single author who can represent the position paper at the workshop must be provided with the submission. There is no limit to the number of position papers that an individual or group can submit. Authors are strongly encouraged to follow the structure previously outlined. Papers should be submitted in PDF format using the designated page on the workshop website.

Areas of Emphasis

We are seeking submissions aimed at various levels of broadly scoped quantum computing and networking stacks:

While the program committee has identified the above topics as important areas for discussion, we welcome position papers from the community that propose additional topics of interest for discussion at the workshop.

Selection

Submissions will be reviewed by the workshops organizing committee using criteria of overall quality, relevance, likelihood of stimulating constructive discussion, and ability to contribute to an informative workshop report. Unique positions that are well presented and emphasize potentially-transformative research directions will be given preference.

Organizing Committee

Follow this link:
Call for Papers: ASCR Workshop on Quantum Computing and ... - insideHPC

MathWorks Introduces a MATLAB Support Package for Quantum Computing that Can Run Circuits on Amazon Braket – Quantum Computing Report

The MATLAB Support Package for Quantum Computing allows users to build, simulate, and run quantum algorithms for prototyping quantum programs. It will allow a user to input a quantum program and then do a local simulation to display the results and includes additional capabilities to plot a histogram, display state formulas, and query possible states. A key feature is that it will also allow a user to run their quantum circuit on one of the several quantum processors or high performance quantum simulators that are available on Amazon Braket for those who have an AWS account with access to Amazon Braket. For more information about this new package, you can view a web page for it here and also a page with instructions on how to set it up and use it here.

March 16, 2023

Read this article:
MathWorks Introduces a MATLAB Support Package for Quantum Computing that Can Run Circuits on Amazon Braket - Quantum Computing Report

High-performance photon detectors to combat spies in the quantum computing age – Phys.org

Using these sensors, scientists were able to generate a secret key at a rate of 64 megabits per second over 10 km of fibre optic cable. Credit: M. Perrenoud - G. Resta / UNIGE

How can we combat data theft, which is a real issue for society? Quantum physics has the solution. Its theories make it possible to encode information (a qubit) in single particles of light (a photon) and to circulate them in an optical fiber in a highly secure way. However, the widespread use of this telecommunications technology is hampered in particular by the performance of the single-photon detectors.

A team from the University of Geneva (UNIGE), together with the company ID Quantique, has succeeded in increasing their speed by a factor of twenty. This innovation, published in the journal Nature Photonics, makes it possible to achieve unprecedented performances in quantum key distribution.

Buying a train ticket, booking a taxi, getting a meal delivered: these are all transactions carried out daily via mobile applications. These are based on payment systems involving an exchange of secret information between the user and the bank. To do this, the bank generates a public key, which is transmitted to their customer, and a private key, which it keeps secret. With the public key, the user can modify the information, make it unreadable and send it to the bank. With the private key, the bank can decipher it.

This system is now threatened by the power of quantum computers. To resolve this, quantum cryptographyor quantum key distribution (QKD)is the best option. It allows two parties to generate shared secret keys and transmit them via optical fibers in a highly secure way. This is because the laws of quantum mechanics state that a measurement affects the state of the system being measured. Thus, if a spy tries to measure the photons to steal the key, the information will be instantly altered and the interception revealed.

One limitation to the application of this system is the speed of the single-photon detectors used to receive the information. In fact, after each detection, the detectors must recover for about 30 nanoseconds, which limits the throughput of the secret keys to about 10 megabits per second. A UNIGE team led by Hugo Zbinden, associate professor in the Department of Applied Physics at the UNIGE Faculty of Science, has succeeded in overcoming this limit by developing a detector with better performance. This work was carried out in collaboration with the team of Flix Bussires from the company ID Quantique, a spin-off of the university.

"Currently, the fastest detectors for our application are superconducting nanowire single-photon detectors," explains Fadri Grnenfelder, a former doctoral student in the Department of Applied Physics at the UNIGE Faculty of Science and first author of the study. "These devices contain a tiny superconducting wire cooled to -272C. If a single photon hits it, it heats up and ceases to be superconducting for a short time, thus generating a detectable electrical signal. When the wire becomes cold again, another photon can be detected."

By integrating not one but fourteen nanowires into their detector, the researchers were able to achieve record detection rates. "Our detectors can count twenty times faster than a single-wire device," explains Hugo Zbinden. "If two photons arrive within a short time in these new detectors, they can touch different wires and both be detected. With a single wire this is impossible." The nanowires used are also shorter, which helps to decrease their recovery time.

Using these sensors, scientists were able to generate a secret key at a rate of 64 megabits per second over 10 km of fiber optic cable. This rate is high enough to secure, for example, a videoconference with several participants. This is five times the performance of current technology over this distance. As a bonus, these new detectors are no more complex to produce than the current devices available on the market.

These results open up new perspectives for ultra-secure data transfer, which is crucial for banks, health care systems, governments and the military. They can also be applied in many other fields where light detection is a key element, such as astronomy and medical imaging.

More information: Fadri Grnenfelder et al, Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems, Nature Photonics (2023). DOI: 10.1038/s41566-023-01168-2

Journal information: Nature Photonics

The rest is here:
High-performance photon detectors to combat spies in the quantum computing age - Phys.org

Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together – HPCwire

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started think D-Wave Systems and IBM, for example the U.S. quantum landscape has become a roiling cauldron of diverse activity. Its perhaps too easy to forget that the U.S. is hardly alone in catching the quantum bug. Europe has also jumped into the fray, as have China, Japan, Canada, Australia and many others. No one wants to miss out on what could globally become a transformational technology.

One area that Europe is tackling sooner than the U.S. is work to fully integrate quantum computing with traditional HPC infrastructure. While theres an emerging consensus worldwide that quantum computing is likely to become just another accelerator in the heterogeneous advanced computing architecture, Europe is taking deliberate steps now to make this a reality and the Quantum Integration Center (QIC) at the Leibniz Supercomputing Center (LRZ) is an illustrative example.

Now turning two years old, the Leibniz QIC has two major objectives. Its meant to be a user facility providing access to a variety of quantum hardware and software and assist in their development. Nothing new there, and its still early on in standing up quantum systems. The second mission goal is to integrate quantum computing with Leibniz traditional computing infrastructure, which includes new AI technologies such as a Cerebras system.

The broad idea is that in the future, Leibniz Supercomputing Center users may submit jobs and not necessarily know which of the underlying hardware options are doing the number crunching. Quantum will be another accelerator in a mix of accelerators ready for work. Creating the blended infrastructure to do that efficiently is at the core of the Leibniz QICs mandate.

We are responsible for what were calling the Munich Quantum Software stack thats to be able to develop needed algorithms and software tools all the way through to running and managing applications on quantum resources and incorporating HPC. The HPC-QC integration is a big part of this. Also, well develop this capability in a qubit-modality-agnostic way, said Laura Schulz, head of Leibniz QIC, who was part of the team that wrote the strategic plan for the QIC.

At the end of the day, our users should be able to utilize this technology with the simplest, cleanest path available. Some users will care about what system theyre actually on, and will want to be able to fine-tune the pulses on those quantum systems. Then youve got the other spectrum, users, like many HPC users, that are not going to care as much about what theyre computing on; theyre going to care more about getting the performance.

Ambitious goals. Schulz recently briefed HPCwire on Leibniz QIC plans and progress. A key early milestone, said Schulz, is demonstrating a working HPC-QC stack.

Weve got an early quantum system (5-qubit) and we have an HPC test center [that comprise] a great testbed, literally sitting in the same room. If you came into the room, you see them literally next to each other. The first milestone is making sure that these systems are connected and that we can send jobs through the HPC to the QPU. It comes back to work on software development. We want to have these systems in place and to have the software to enable interaction not two different software stacks running independently, but a single source software. Then well get progressively better as we get other systems in, she said.

Though these are still early days, the Leibniz QIC has been growing rapidly. On the hardware side, it currently has a 5-qubit superconducting processor from IQM, simulators from Atos (QLM) and Intel (IQS) and will add more QPUs and types. For example, theres a 20-qubit system coming as part of the Q-Exa Project. At the moment, Leibniz QIC is focused on superconducting-based quantum processors but the broad goal is to avoid being locked into single qubit technology.

Were waiting on the neutral atoms; those are a little bit further down the timeline. For us, right now, its superconducting because it offers great opportunities for scaling. Each of these systems has its own flavor and benefits. Superconducting is great for scalability, but its not as stable. Ion trap has more stability, but you cant quite scale it as much.

We have these different systems that were building up and we are going on the postulate were going to have multiple types of QPUs in the ecosystem; theres not going to be one winner, right, and the technology is too new to bank on any one particular [approach]. But by having a suite of different types of modalities around, well be able to experiment, said Schulz, who was selected this year as an HPCwire Person to Watch.

Its worth noting the wide range of the Leibniz QICs constituency. It is part of one of six European supercomputing centers involved in Europes quantum computing development effort. It is also part of the Munich Quantum Valley(MQV). Heres how MQV describes itself:

As a hub between research, industry, funders, and the public, Munich Quantum Valley (MQV) is the crystallization point for the development of the full spectrum of quantum technologies. It promotes an efficient knowledge transfer from research to industry, establishes a network with international reach and provides tailor-made education and training opportunities in the fields of quantum science and technology.

Harnessing three of the most promising technology platforms superconducting, neutral-atom, and trapped-ion qubit systems Munich Quantum Valley will develop and operate competitive quantum computers in Bavaria. In a unique holistic approach researchers develop all layers, from hard- and software up to applications.

The Munich Quantum Valley collaboration unites research capacities and technology transfer power of three major universities and key research organizations: the Bavarian Academy of Sciences and Humanities (BAdW), the Fraunhofer-Gesellschaft (FhG), the Friedrich-Alexander-Universitt Erlangen-Nrnberg (FAU), the German Aerospace Center (DLR), the Ludwig- Maximilians-Universitt Mnchen (LMU), the Max Planck Society (MPG), and the Technical University of Munich (TUM). Their joint work will advance quantum technologies at all levels for future use in science, research and industrial applications.

Think Silicon Valley focused on quantum. Perhaps more than in the U.S., the interplay between industry and government-funded programs is fundamental. For example, the MQV interchange with the Leibniz QIC is extensive said Schulz.

I havent paid as much attention to the American situation as much as I should. What impresses me about what I see happening in Europe is this early dedication to HPC-QC integration. We know that quantum is going to have to be trusted, and have to be fortified, and its going to come in to the supercomputing realm. I mean, quantum is high performance computing, right. Its going to end up as another accelerator capability.

The other thing that Ive noticed is the partnership with industry. And while there is some of the early hype, some overly ambitious promises and all, but what Im seeing, trend-wise, is the conversation is more tempered. We realize that theres a lot of possibilities here, but also realize weve got several steps to go to get to that potential promise. The companies that weve been interacting with have that mentality, they understand that the possibility is there, theyre doing these proof of concept projects, said Schulz.

Over time, of course, the market will determine which development approaches win. China has embarked on an aggressive centralized plan. The U.S. has a blend of DOE-funded National QIS Research Centers and a vigorous separate commercial quantum development community. Europe has a Quantum Technologies Flagship program and the European High-Performance Computing Joint Undertaking (EuroHPC JU) which named LRZ as a quantum site.

At ground level, Schulz is busily ramping the Leibniz QIC. Staffing has been a challenge. Headcount is currently ~24 and headed north of 40 by year-end, hopes Schulz who is actively hiring. Its a multi-discipline group, with its share of physicists, but software workers currently comprise around 50 percent of the team. Theres also many external collaborations within the MQV.

Said Schulz, My team is kind of this microcosm of the community. Ive got computer scientists, software developers, electrical engineers, and quantum physicists, experimental and theoretical, I have this really nice little community that represents this bigger picture. Whats funny is some of the issues that we face as a team. We were just doing all of our annual reviews, and the HPC people were saying, Im good on the quantum more or less, but need to know a lot more about how this works. The quantum people were like, I really need to understand HPC more, for example how does the scheduling work? Were cross-training each other within our own team, to ensure that everybody has a baseline to understand how this comes together smartly.

Mixing quantum computing and traditional HPC in the same facility has also prompted new challenges.

Schulz said, With HPC, and energy efficiency, the whole infrastructure is already complex and has evolved on its own. But now weve got these cryostats that were taking care of and were having to change out the nitrogen on a particular schedule. Were having to learn how to calibrate these things and how to maintain the calibration. Were having to learn a whole new set of operational programs. We have to worry about all these other external factors humidity, temperature, electromagnetic radiation. This is a new instrument that we have for the compute and we have to figure out how to bring into an HPC center.

Some of this technology is coming straight out of the physics labs, and were going to startup companies for some of the early pieces of this. Weve got to try to help them understand what its going to take in their evolution and their form factors and their stability to be to be able to leave the system alone and have it function at the same level of care taking as is an HPC system.

During this developmental stage, creating a hybrid quantum-classical HPC infrastructure at Leibniz QIC is an all-hands-on-deck enterprise. Thats not practical long-term, said Schulz, We want to get to the point where we dont have to have trained and skilled experimental physicists on staff 24/7. Thats a little extreme to have dedicated experimental physicists taking care of these systems. We see ourselves, at this point, helping the maturation of these technologies where they can exist in an HPC center. Hopefully, as these systems become more commercially viable, were hoping to help them exist in a commercial market space.

Lately there has been buzz around chasing quantum advantage the notion of using quantum technology in a commercial application. Schulz urges both patience and a change in thinking.

When I hear quantum advantage, I know its usually used as metric for beating a classical computer in a particular application. I want to challenge that and suggest that there are other ways we should be thinking about quantum advantage. I think that for particular types of algorithms, for particular applications, or parts of an application, quantum is going to be fantastic or has the potential to be fantastic. However, thats when we have a real-world application, an assembly of algorithms involved, and all of that has to work together. Quantum may be able to take part of that load off of this overall application.

Im looking at it from the HPC-QC integration and how all of this works together. So, Im thinking about what is the HPC-QC advantage? What does that mean? I mentioned things like energy. So, energy may end up being an advantage for quantum over HPC. Theres other parameters that we should be thinking about. I know that everybodys been shooting for that (quantum advantage). I think that thats going to be a bit farther out. Lets be honest, you know, theres a lot of friction points that we have to sort out along the way.

It will be interesting to monitor how QC-HPC integration efforts proceed at Leibniz QIC. The notion of a single stack able to manage multiple qubit modalities and systems and traditional HPC resources together, seamlessly, is enticing. Stay tuned.

See the article here:
Leibniz QIC's Mission to Coax Qubits and Bits to Work Together - HPCwire

Here are the top Dutch-based Quantum technology startups to watch … – Silicon Canals

Image credit: Delft Circuits

The concepts of quantum mechanics, created in the early 20th century to describe nature at the size of atomic and subatomic particles, serve as the foundation for quantum technology.

Applications in encrypted transmission, disaster management through improved prediction, computers, simulations, science, medicine, cryptography, and medical imaging are just a few examples of how quantum technology can be used.

Even though the layman can be confused by definitions, the use of quantum technology in our everyday lives is all pervasive. From phones and computers to television and cars, applications of quantum technology can be found everywhere.

The Netherlands has of late become a hub of quantum technology research and application. Many startups in the country are working in the field to make the technology accessible and useful to humanity.

We have listed out the top quantum technology startups in the Netherlands. Do take a look:

Fermioniq is a quantum software company based in Amsterdam. Co-founded by Jorgen Sandig, Ido Niesen, Chris Cane, and Prof. Harry Buhrman, it is one of the top Dutch-based quantum technology startups with a highly competitive teamare the co-founders of Fermioniq.

The company makes softwares to run specifically on quantum computers.

QuiX Quantum is a photonic quantum technology startup based in Enschede, the Netherlands. Dr. Jelmer Renema, a specialist in quantum photonics, and a group of professors from the University of Twente formed the company in January 2019 with the help of Dr. Hans van den Vlekkert, a seasoned businessman and veteran of the photonics sector.

The company counts RAPH2Invest, FORWARD.one and Oost NL among its investors.

The companys product portfolio includes:

Founded in July 2021, QuantWare is a quantum technology startup with the single goal of growing the field, democratising hardware, and advancing the usability of the quantum computer.

The Dutch company focuses on the quickest route to practical quantum computation, building on its unrivalled know-how in scaling up superconducting QPUs. They are a cooperative business that collaborates with industry leaders and specialists to provide complementary solutions.

Their products include:

Qu & Co creates quantum software and algorithms. The company wants to make quantum advances while maintaining outstanding standards of objectivity.

The first quantum computing platform designed exclusively for chemistry and materials science, QUBEC, is made available to clients of Qu & Co.

QphoX is a quantum transduction company. The first quantum modem developed by OphoX will link quantum computers in a quantum network. The foundation of the upcoming quantum internet will be their technology.

Through optical interconnects operating at room temperature, it will enable remote communication between quantum computers. They use a mechanical intermediary resonator to couple microwave and optical photons to create a quantum transducer. This synchronised, reversible method is based on the piezoelectric and optomechanical effects.

Quantum chips must be conceived, made, and tested in order to achieve a commercial quantum advantage. Orange Quantum Systems is developing the test system and protocols to get important information on quantum chip performance.

The company also provides diagnostic tools to improve quantum chip design.

To ensure high-quality research in quantum technologies, 39 research funding organisations have come together to form QuantERA.

The programmes objectives are to:

Delft Circuits brings quantum technology to life in collaboration with their clients as an independent, committed supplier of quantum hardware. The companys products include:

By mapping exposures and executing real-time attack detection with their Identity Threat Detection and Response (ITDR) solution suite, QuompleX decreases cyber risk and attack surfaces.

Researchers from the Netherlands, Italy, and Austria are the firms participants.

View post:
Here are the top Dutch-based Quantum technology startups to watch ... - Silicon Canals