Archive for the ‘Quantum Computing’ Category

Something has to be done about the quantum computer security threat – PC Gamer

When it comes to technology, revolutionary is a word that gets overused. But if theres one thing in the world of 21st century computing that will deserve being described as such, its a fully functional quantum computer. It's no exaggeration to suggest that quantum computers have the potential to change the world as we know it.

Quantum computers are coming sooner than you might expect, in fact there are already functional, if rudimentary systems that have been developed by giants including IBM, Microsoft and Google along with many others. And you can be sure that the governments of the world are working behind the scenes in a quantum arms race. What we see in public is likely not at the bleeding edge of quantum computing research and development.

The power of a quantum computer, versus that of a classical computeror QC vs PCis they're set to dramatically advance fields as diverse as climate science, biology, and machine learning. But there's another application, and it's a somewhat shady one: espionage.

The governments of the world see quantum computers as a tool to break encryption standards. A fully functioning and stable high qubit quantum machine has the potential to wreak havoc across the internet. Previously secure networks would be vulnerable and public confidence in financial systems could collapse.

Forget Y2K, think Y2Q.

Then there are cryptocurrencies. Quantum computers could pose an existential threat to crypto, but I'll get to that a bit later. First, a crash course in quantum computing.

The functions of a classical computer are based around the use of bits, or binary digits, represented by 1s or 0s. A quantum bit, or a qubit as it's known, can exist as a 1 or 0, or both at the same time.This makes a QC much more adept at seeking answers to problems with a large number of outcomes or possible combinations than a classical computer.

A qubit harnesses the properties of quantum superposition. Via quantum entanglement, a qubit can be linked to other qubits to exponentially increase processing power. In simple terms, a QC is excellent at leveraging probabilities, which means that the answers to complex operations are exponentially faster with more qubits. A QC with enough qubits is capable of certain computations that a classical computer can never realistically solve. In certain cases, a calculation that a quantum computer could complete in mere minutes may take billions of years, or more to solve on even the world's most powerful supercomputer today.

The point at which a quantum computer can outperform a classical computer is called quantum supremacy. Some researchers already claim it has occurred, but any such claim is very specific, and completely impractical in a real world sense. There are also significant challenges to overcome before quantum computing becomes a commercial reality. Qubits are tricky things, to put it mildly, and maintaining coherence and scaling them is an area of ongoing research.

It's likely that we're many years away from practical quantum computers, but with enough stable qubits, there are some genuinely world-changing possibilities within reach. For now, the one I'll focus on is the ability to crack encryption. That might be the number one reason for governments to develop quantum computers.

It goes without saying that there's a need for network security. Military networks, financial systems, critical infrastructure, communications. You name it, it all needs to be secure to maintain confidence in the system. Security is built upon encryption.

Much of the encryption underpinning internet security is based upon prime numbers. As far back as 1994, American mathematician Peter Shor developed what is known as Shor's algorithm. It is used to find the prime factors of an integer. Put simply, this algorithm can be used to break many public key cryptography schemes, including RSA, one of the most widely used, and oldest algorithms for encryption.

I don't mean to be a scaremonger here. A QC capable of breaking a large key RSA encryption is probably years away at best, but the theoretical vulnerability exists, and the time to protect the possibility of an attack against it is now.

The governments of the world are developing post-quantum encryption schemes. US National Institute of Standards and Technology (NIST) is undertaking a multi-year project with the aim of standardizing one or more quantum-resistant public-key cryptographic schemes. If successful, most of the world's networks should transition to security which will appear seamless to the wider public.

In the end, Y2K wasn't the catastrophe that many doomsayers predicted. Hopefully quantum computers vs public key encryption passes with as little impact as Y2K did.

The moral of the story is that it's important not to ignore the threat posed by a QC. If the NSA is taking steps to secure its networks, then others should take the threat seriously too.

Quantum computers present an existential threat to many cryptocurrencies. Bitcoin is the logical example to use. Bitcoins core protocol relies on Elliptic Curve Digital Signature Algorithm (ECDSA) to create a private key and a corresponding public key. A sufficiently powerful QC can derive the private key from the public key. This allows an attacker to access that particular wallet. ECDSA is not easy to crack, but the potential is there and ignoring it is fraught with danger given the notoriously slow pace of blockchain development combined with head-in-the-sand tribalism.

Bitcoins early wallets are particularly vulnerable due to their use of pay to public key (p2pk) addresses, including the Satoshi Nakamoto era wallets. QC sceptics will say that BTC developers can hard fork to a quantum resistant signature scheme, and thats certainly true, but those dormant wallets remain vulnerable. Some estimates put the number of lost bitcoins at up to 25% of the entire supply. That's a lot of BTC.

What if a million bitcoins suddenly appeared on the market? Confidence would plummet and the price of bitcoin would crash. A hundred billion dollars, give or take is a juicy target for a rogue state. North Korea could certainly use the money.

But BTC and other cryptos aren't just about wealth. Their decentralised nature is antithetical to the ideologies and financial sectors of many countries. A country like China might wish to destroy all confidence in crypto, in order to remain in control of its financial sector. Perhaps the US might covertly attack crypto in order to prevent its use by criminals. Russia might.. well, who knows what Russia might do.

Some cryptos have already adopted QC secure signature schemes. Others including Ethereum and Cardano have quantum signatures or protection on their roadmaps.

I want to note again, my aim here isn't to pronounce doom and gloom. Bitcoin and others will survive if they take steps to protect against QCs, it's just that time is definitely ticking along. Cryptocurrencies already face numerous adversaries day after day, and yet it survives.

But it's time to get past the FUD and take quantum computers seriously. Developers need to act now. It might be a year or 10, but If a black swan event occurs, itll be far too late to do anything about it. The later the threat gets taken seriously, the harder it will be to mitigate against it.

No. Don't stress. Most of the legwork is being done behind the scenes and your current passwords and data should remain unaffected as long as the corporate caretakers of it are competent.

You can do things like change your private keys to longer key lengths where possible, but it's pretty safe to say that an adversary with a quantum computer isn't going to be worried about accessing your personal router, banking, or Coinbase password. There's bigger fish in the sea to go after.

The main thing is to be aware of the possible threat. The more people that are aware, the more questions get asked and hopefully answered. With any luck, by the time a fully functional quantum computer sees the light of day, the world will continue just as it always has, while enjoying the benefits they will bring.

In the future, hopefully stories like this one will be long forgotten, much like those Y2K doom and gloom articles were. I want to move on to talk about how a quantum computer can help to solve the really big problems, like clean energy, cures or treatments for things like cancer or diabetes, developing next generation materials, climate simulation or managing an entire city full of self-driving cars. But we all know that the likes of China and the US are after strategic and national security objectives first. And with that in mind, the wider internet and cryptocurrency remains vulnerable.

See the rest here:
Something has to be done about the quantum computer security threat - PC Gamer

PRESS RELEASE: SSH launches Tectia Quantum-Safe and Zero-Trust Editions for the Next Wave of Secure Application Communications – Yahoo Finance

SSH Communications Security Oyj

SSH launches Tectia Quantum-Safe and Zero-Trust Editions for the Next Wave of Secure Application Communications

SSH announces two new editions of their flagship product Tectia SSH Client Server: Tectia Quantum Safe Edition and Tectia Zero Trust Edition. These new additions to the Tectia product family will ensure that SSHs secure remote access solutions stay agile, dynamic and robust enough to meet the challenges posed by quantum computing and cloudification.

Secure Shell (SSH) protocol enables online connections and file transfers between systems handling critical data. Tectia is the original commercial implementation of the SSH protocol, providing secure point-to-point remote access, file transfer and tunneling connections between and to applications.

Quantum computing presents challenge to encryption in the near future by threatening to render classic cryptography useless. Even now, transmissions are recorded and then decrypted when Cryptographically Relevant Quantum Computers are available, making long-term secrets vulnerable as we speak. Tectia Quantum Safe Edition protects critical remote access, file transfers and tunneling connections against the quantum threat.

Tectia Zero Trust Edition introduces an efficient role-based access control (RBAC) upgrade to bring scalability to managing access to large server estates. By operating without permanent credentials like SSH keys or passwords, Tectia Zero Trust Edition eliminates the costly process of managing or rotating credentials while also greatly enhancing system security by removing a significant potential attack vector. Additionally, it increases transparency by centralizing system audit logs.

Quantum Safe and Zero Trust are the two cornerstones of our solution portfolio. I'm extremely proud that we have upgraded Tectia with technologies that will keep our customers safe long into the future while making their environments more dynamic," says SSH CEO, Dr. Teemu Tunkelo. Tectia has a very strong and loyal customer base, especially on the financial sector, Teemu continues. It is therefore not a surprise that our first Tectia Quantum and Tectia Zero Trust customers are banks, since these businesses want to stay ahead of the cybersecurity game.

Story continues

Tectia Quantum-Safe Edition will be available to customers during Q2/2022. Tectia Zero-Trust Edition is available to customers immediately.

For more information on Tectia Quantum Safe Edition, please visit: Tectia SSH Client/Server Quantum-Safe Edition

For more information on Tectia Zero Trust Edition, please visit: Tectia SSH Client/Server Zero Trust Edition

Learn more about Tectia: Tectia SSH Client/Server

About SSHSSH helps organizations safeguard their mission-critical digital assets at rest, in transit and in use. We have 5,000+ customers worldwide, including 40 percent of Fortune 500 companies, and major organizations in Finance, Government, Retail, and Industrial segments. We are committed to helping our customers secure their business in the age of hybrid cloud and distributed IT and OT solutions. Our Zero Trust solutions offer safe electronic communications, secure access to servers and between servers. Our teams in North America, Europe, Asia along with a global network of certified partners ensure customer success. The companys shares (SSH1V) are listed on Nasdaq Helsinki. http://www.ssh.com.

Read the rest here:
PRESS RELEASE: SSH launches Tectia Quantum-Safe and Zero-Trust Editions for the Next Wave of Secure Application Communications - Yahoo Finance

Take a Diversified Approach to Encryption – DARKReading

Quantum computers may one day break encryption. So might stochastic magnetic tunnel junction machines, also known as spintronics. But we don't need next-generation computing power to break encryption. Its successfully happening right here and now.

Why Does Encryption Fail?There are many factors that contribute to encryption weaknesses and create vulnerabilities ready for exploitation by cybercriminals or state-sponsored actors. Chief among them is poorly implemented cryptography in terms of both the crypto libraries themselves and the way they are used. Bugs such as Heartbleed or the recent implementation error of the Elliptic Curve Digital Signature (ECDS) algorithm in Java versions 15 and above, undermine all programs based on them. The incorrect use of a library, insufficient entropy, or use of weak ciphers is a daily occurrence that impacts specific applications, making bugs even harder to find. Other encryption failings include weak passwords and certificates taken from compromised machines. Combine these techniques with harvest-now-decrypt-later attacks, and encryption technology is no longer what it used to be.

Mathematics, the Cornerstone of Encryption Extremely difficult mathematics underlie our encryption. RSA, the gold standard for public key encryption, is based on the complexity of breaking down a large number into its constituent primes. The forward problem is easy and quick to solve: Take some primes and multiply. But the reverse problem is much harder: Given an integer, which primes were multiplied to make it? Attempts to solve the problem of prime factorization dates back centuries, with Euclid of Alexandria working on specific properties of prime numbers more than 2,000 years ago.

Although no solutions have been found that work on conventional binary computers, that does not mean none exist. After more than 2,000 years of work, most mathematicians agree a prime-factorization algorithm used by a classic computer wont be here anytime soon. Peter Shor proposed an algorithm that could do composite number decomposition in polynomial time on a quantum computer breaking RSA and Diffie-Hellman ciphers but a quantum computer of this kind has not been publicly demonstrated at sufficient scale. Yet.

To prepare for the day when Shors algorithm is in play, the National Institute for Standards and Technology (NIST) has sponsored a post-quantum cryptography (PQC) competition. Now in its sixth year, the competition that began with 82 submissions is expected to announce its four finalists this year.

The remaining candidates are asymmetric-key algorithms (similar in concept to RSA) believed to be capable of withstanding the computational power of a stochastic algorithm that might run on a scalable quantum computer. The mathematical problems upon which these newer algorithms are based are much younger and have not been studied extensively.

In the field of complex mathematics centuries are common time frames. For example, Fermats last theorem took 358 years to be proven. By that logic, its no wonder we have already seen a previously unknown or unforeseen weakness revealed in Rainbow what had been the most peer-reviewed quantum-resistant algorithm now deemed unsuitable for use by NIST. Its only a matter of time, then, before new encryption standards are weakened or outright broken. This is why NIST is encouraging organizations to embrace crypto agility in their post-quantum preparedness planning.

What complicates this matter further is that we don't and won't know which methods are bearing fruit and which techniques are being used, and by whom, to break the encryption we rely on to secure our digital universe. For all we know, large-scale quantum computers are already in use. If you were a nation state or criminal mastermind and had the ability to factor large numbers into their primes, would you tell the world? This is the fundamental problem with modern encryption: We often dont know which, when, or how ciphers are compromised. However, we can say with certainty that encryption is being broken and will be broken.

Look to Wall Street and Diversify To harden IT environments and digital assets in the face of such uncertainty, we can look to Wall Street for strategic advice. To combat the uncertainties and risks associated with loans and stocks go bad, financial institutions embrace diversification. By diversifying investments across multiple asset classes, geographies, and industries, the risks of an entire portfolio imploding are minimized.

This approach can, and should, be applied by enterprise IT and SOC teams when it comes to encryption. Using and mixing/stacking multiple encryption techniques helps to keep data traveling securely even if a flaw is uncovered in one of the encryption layers. We wont always know which part of a crypto stack has been defeated and how, but it wont matter if the cryptography is sufficiently diversified.

As an industry, we need to support the simultaneous use of multiple approaches, anticipating that new crypto methods will come and go. We must mix asymmetric key technology with symmetric key technology, and transmit keys through out-of-band channels. Most importantly, we must develop agreed-on metrics and industrywide benchmarks to measure exactly how diversified our crypto strategy is.

More:
Take a Diversified Approach to Encryption - DARKReading

Making Quantum Computing a Reality – HBR.org Daily

While quantum computers exist in the lab, general-purpose quantum computers arent yet available for commercial use. How can businesses respond to potential disruptions from this technology before it has actually emerged into the mainstream market? One company that has been investing substantially into quantum computing is Infosys, and so the authors reached out to several researchers and business leaders at the company to learn more about their work. They found that Infosys has taken a hybrid approach, blending elements of classical and quantum computing in order to build a bridge from the reality of today to the disruptive technologies of tomorrow. This has helped the company make headway in leveraging quantum technology in a variety of applications, including optimization problems, machine learning, and cybersecurity. While theres still a long way to go when it comes to developing and applying quantum tech, a hybrid approach is enabling companies to serve customers today, while getting a leg up on the future even if some of the technology involved is still catching up.

Scientists have theorized about the potential of quantum computing that is, a new approach to computation that uses probabilities, rather than binary signals, to make calculations for decades. But in recent years, both private and public sector investment into developing quantum computers has grown significantly, with one report projecting investments of more than $800 million in 2021 alone.

Quantum technology could revolutionize everything from genomic sequencing to transport route optimization, from code-breaking to new materials development. But while quantum computers exist in the lab, general-purpose quantum computers arent yet available for commercial use. How can businesses respond to potential disruptions from this technology before it has actually emerged into the mainstream market?

To explore this question, its helpful to look to historical examples of major technological transitions, such as the shift from analog to digital photography, or from internal combustion to electric engines. In many of these cases, companies leveraged a hybrid approach to integrate new technologies: Rather than attempting to switch over to the new technology all at once, they developed products that combined elements of old and new technologies. For example, the hybrid-electric Prius enabled Toyota to learn about making electric cars while still leveraging its foundation of expertise with traditional gas engines. After launching this initial hybrid model, Toyota moved forward with plug-in hybrid cars and fuel cell electric cars, paving the way for its eventual launch of all-electric cars several years later.

So, what might a similar hybrid approach look like for quantum computing? One organization thats been investing substantially into quantum computing is Infosys, and so we reached out to several researchers and business leaders at the company to learn more about their work. Through a series of in-depth interviews, we found that Infosys has been experimenting with two hybrid approaches to begin commercializing existing innovations and build a bridge to the future of quantum computing:

Infosys has been leveraging these approaches in many different fields, both independently and in partnership with startups. Below, we describe three key applications of quantum computing in which Infosys has begun investing: optimization problems, in which the company has been exploring the potential of quantum-inspired algorithms, and machine learning and cybersecurity solutions, in which Infosys has begun leveraging hybrid models.

While classical algorithms are effective in many domains, they can be prohibitively slow and expensive when it comes to solving certain kinds of optimization problems. For example, in finance, it is difficult to use traditional computers to optimize portfolios, since this necessitates rapid, real-time analysis of the constantly fluctuating risk values associated with investing in each individual stock. To address this challenge, Infosys developed quantum-inspired algorithms to optimize the selection and allocation of assets. This enabled the company to build a diversified portfolio that maximized returns and minimized risks for more than 100 stocks in just one minute, ultimately achieving a 21% improvement in returns compared to conventional (i.e., non-quantum-inspired) asset allocation strategies.

Another area in which traditional computers can struggle to optimize accurately and cost-effectively is in supply chain. To explore the potential for quantum computing in this space, Infosys partnered with QpiAI, a startup developing quantum-inspired solutions for supply chain optimization. While these projects are still in development, the team has already shown that its algorithms enable a 60% cost reduction in vehicle routing optimization.

Machine learning algorithms depend on highly intensive (and expensive) computation power to extract learnings from large datasets. Especially when it comes to analyzing datasets that are highly imbalanced that is, where the cases you care about identifying are extremely rare quantum computing could both dramatically reduce costs and improve these models effectiveness.

In financial fraud detection, for example, the number of fraudulent transactions is tiny compared to the number of normal transactions. This makes it hard to develop classical machine learning algorithms that can identify fraud sufficiently quickly and accurately. But Infosys took a hybrid approach, building out a hybrid neural network algorithm in which most network layers used classical computing, while some layers incorporated input from a quantum computer. With this system, Infosys was able to achieve a 1.66% improvement in the accuracy of its fraud detection tool a difference that may seem small, but has the potential to translate to significant savings given the massive scale of the global financial system.

Current cybersecurity protocols typically use pseudo-random numbers to encrypt sensitive information such as passwords, personal data, or even blockchains. The problem is, quantum computers can easily crack the methods traditional computers use to generate random numbers, potentially posing a huge threat to any organization using these standard encryption tools. Yet, alongside this new threat, quantum technology also holds new possibilities: Quantum systems can produce a large, reliable stream of true random numbers that cannot be decrypted with either classical or quantum systems.

Infosys partnered with quantum cybersecurity firm Quintessence Labs to develop a hybrid solution that first generates true random keys with a quantum random number generator, and then funnels those keys into classical cryptographic algorithms and encryption systems. This approach makes it possible to generate truly random, unpredictable numbers for use in a wide variety of existing commercial applications, enabling a new level of cybersecurity for any organization that works with large quantities of sensitive data.

. . .

These applications might sound like science fiction, but they are very real. While quantum computers still have a long way to go before theyre ready for prime time, businesses are already leveraging quantum technologies in hybrid solutions, blending the old with the new to build a bridge between the reality of today and the potential of tomorrow. Investing in this hybrid strategy now is the best way for companies to develop the expertise in quantum principles and software development that will become critical as these technologies reach maturity. It also means that regardless of how exactly quantum hardware develops and which platforms ultimately emerge as industry standards, the algorithms being developed today will be able to operate on almost any type of quantum hardware (rather than being limited to just one system). Ultimately, taking a hybrid approach enables companies to serve customers today, while getting a leg up on the future even if some of the technology involved is still catching up.

Original post:
Making Quantum Computing a Reality - HBR.org Daily

Quantum Computing, Virtual Reality, Artificial Intelligence and 5G Growth Opportunities and Innovations 2022 – ResearchAndMarkets.com – Galveston…

Country

United States of AmericaUS Virgin IslandsUnited States Minor Outlying IslandsCanadaMexico, United Mexican StatesBahamas, Commonwealth of theCuba, Republic ofDominican RepublicHaiti, Republic ofJamaicaAfghanistanAlbania, People's Socialist Republic ofAlgeria, People's Democratic Republic ofAmerican SamoaAndorra, Principality ofAngola, Republic ofAnguillaAntarctica (the territory South of 60 deg S)Antigua and BarbudaArgentina, Argentine RepublicArmeniaArubaAustralia, Commonwealth ofAustria, Republic ofAzerbaijan, Republic ofBahrain, Kingdom ofBangladesh, People's Republic ofBarbadosBelarusBelgium, Kingdom ofBelizeBenin, People's Republic ofBermudaBhutan, Kingdom ofBolivia, Republic ofBosnia and HerzegovinaBotswana, Republic ofBouvet Island (Bouvetoya)Brazil, Federative Republic ofBritish Indian Ocean Territory (Chagos Archipelago)British Virgin IslandsBrunei DarussalamBulgaria, People's Republic ofBurkina FasoBurundi, Republic ofCambodia, Kingdom ofCameroon, United Republic ofCape Verde, Republic ofCayman IslandsCentral African RepublicChad, Republic ofChile, Republic ofChina, People's Republic ofChristmas IslandCocos (Keeling) IslandsColombia, Republic ofComoros, Union of theCongo, Democratic Republic ofCongo, People's Republic ofCook IslandsCosta Rica, Republic ofCote D'Ivoire, Ivory Coast, Republic of theCyprus, Republic ofCzech RepublicDenmark, Kingdom ofDjibouti, Republic ofDominica, Commonwealth ofEcuador, Republic ofEgypt, Arab Republic ofEl Salvador, Republic ofEquatorial Guinea, Republic ofEritreaEstoniaEthiopiaFaeroe IslandsFalkland Islands (Malvinas)Fiji, Republic of the Fiji IslandsFinland, Republic ofFrance, French RepublicFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabon, Gabonese RepublicGambia, Republic of theGeorgiaGermanyGhana, Republic ofGibraltarGreece, Hellenic RepublicGreenlandGrenadaGuadaloupeGuamGuatemala, Republic ofGuinea, RevolutionaryPeople's Rep'c ofGuinea-Bissau, Republic ofGuyana, Republic ofHeard and McDonald IslandsHoly See (Vatican City State)Honduras, Republic ofHong Kong, Special Administrative Region of ChinaHrvatska (Croatia)Hungary, Hungarian People's RepublicIceland, Republic ofIndia, Republic ofIndonesia, Republic ofIran, Islamic Republic ofIraq, Republic ofIrelandIsrael, State ofItaly, Italian RepublicJapanJordan, Hashemite Kingdom ofKazakhstan, Republic ofKenya, Republic ofKiribati, Republic ofKorea, Democratic People's Republic ofKorea, Republic ofKuwait, State ofKyrgyz RepublicLao People's Democratic RepublicLatviaLebanon, Lebanese RepublicLesotho, Kingdom ofLiberia, Republic ofLibyan Arab JamahiriyaLiechtenstein, Principality ofLithuaniaLuxembourg, Grand Duchy ofMacao, Special Administrative Region of ChinaMacedonia, the former Yugoslav Republic ofMadagascar, Republic ofMalawi, Republic ofMalaysiaMaldives, Republic ofMali, Republic ofMalta, Republic ofMarshall IslandsMartiniqueMauritania, Islamic Republic ofMauritiusMayotteMicronesia, Federated States ofMoldova, Republic ofMonaco, Principality ofMongolia, Mongolian People's RepublicMontserratMorocco, Kingdom ofMozambique, People's Republic ofMyanmarNamibiaNauru, Republic ofNepal, Kingdom ofNetherlands AntillesNetherlands, Kingdom of theNew CaledoniaNew ZealandNicaragua, Republic ofNiger, Republic of theNigeria, Federal Republic ofNiue, Republic ofNorfolk IslandNorthern Mariana IslandsNorway, Kingdom ofOman, Sultanate ofPakistan, Islamic Republic ofPalauPalestinian Territory, OccupiedPanama, Republic ofPapua New GuineaParaguay, Republic ofPeru, Republic ofPhilippines, Republic of thePitcairn IslandPoland, Polish People's RepublicPortugal, Portuguese RepublicPuerto RicoQatar, State ofReunionRomania, Socialist Republic ofRussian FederationRwanda, Rwandese RepublicSamoa, Independent State ofSan Marino, Republic ofSao Tome and Principe, Democratic Republic ofSaudi Arabia, Kingdom ofSenegal, Republic ofSerbia and MontenegroSeychelles, Republic ofSierra Leone, Republic ofSingapore, Republic ofSlovakia (Slovak Republic)SloveniaSolomon IslandsSomalia, Somali RepublicSouth Africa, Republic ofSouth Georgia and the South Sandwich IslandsSpain, Spanish StateSri Lanka, Democratic Socialist Republic ofSt. HelenaSt. Kitts and NevisSt. LuciaSt. Pierre and MiquelonSt. Vincent and the GrenadinesSudan, Democratic Republic of theSuriname, Republic ofSvalbard & Jan Mayen IslandsSwaziland, Kingdom ofSweden, Kingdom ofSwitzerland, Swiss ConfederationSyrian Arab RepublicTaiwan, Province of ChinaTajikistanTanzania, United Republic ofThailand, Kingdom ofTimor-Leste, Democratic Republic ofTogo, Togolese RepublicTokelau (Tokelau Islands)Tonga, Kingdom ofTrinidad and Tobago, Republic ofTunisia, Republic ofTurkey, Republic ofTurkmenistanTurks and Caicos IslandsTuvaluUganda, Republic ofUkraineUnited Arab EmiratesUnited Kingdom of Great Britain & N. IrelandUruguay, Eastern Republic ofUzbekistanVanuatuVenezuela, Bolivarian Republic ofViet Nam, Socialist Republic ofWallis and Futuna IslandsWestern SaharaYemenZambia, Republic ofZimbabwe

Read more from the original source:
Quantum Computing, Virtual Reality, Artificial Intelligence and 5G Growth Opportunities and Innovations 2022 - ResearchAndMarkets.com - Galveston...