Archive for the ‘Quantum Computing’ Category

Podcast with Professor Peter Kogge from Notre Dame, Professor Geraldo Ortiz from Indiana University and Dr. David Stewart from Purdue about the new…

Podcast with Professor Peter Kogge from Notre Dame, Professor Geraldo Ortiz from Indiana University and Dr. David Stewart from Purdue about the new Center for Quantum Technologies  Quantum Computing Report

Here is the original post:
Podcast with Professor Peter Kogge from Notre Dame, Professor Geraldo Ortiz from Indiana University and Dr. David Stewart from Purdue about the new...

Physics Nobel Prize winner Serge Haroche on quantum computing: There are still many difficulties to overcome – EL PAS USA

Physics Nobel Prize winner Serge Haroche on quantum computing: There are still many difficulties to overcome  EL PAS USA

Read more here:
Physics Nobel Prize winner Serge Haroche on quantum computing: There are still many difficulties to overcome - EL PAS USA

Quantum Computing Breakthrough: Qubits for a Programmable, Solid-State Superconducting Processor – SciTechDaily

Researchers have demonstrated that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid-state superconducting processor.

Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology

Scientists have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid-state superconducting processor. This breakthrough was made by researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom.

Previously, this was only possible in Rydberg atom systems.

A qubit, or quantum bit, is a basic unit of quantum information. It is essentially the quantum version of conventional computers most basic form of information, the bit.

In a new paper, scientists demonstrated a first look at the emergence of quantum many-body scarring (QMBS) states as a robust mechanism for maintaining coherence among interacting qubits. Such exotic quantum states offer the appealing possibility of realizing extensive multipartite entanglement for a variety of applications in quantum information science and technology to achieve high processing speed and low power consumption. The paper, which will be published today (October 13) in the journal Nature Physics, is authored by ASU Regents Professor Ying-Cheng Lai, his former ASU doctoral student Lei Ying and experimentalist Haohua Wang, both professors at Zhejiang University in China.

QMBS states possess the intrinsic and generic capability of multipartite entanglement, making them extremely appealing to applications such as quantum sensing and metrology, explained Ying.

Classical, or binary computing relies on transistors which can represent only the 1 or the 0 at a single time. In quantum computing, qubits can represent both 0 and 1 simultaneously, which can exponentially accelerate certain computing processes.

In quantum information science and technology, it is often necessary to assemble a large number of fundamental information-processing units qubits together, explained Lai. For applications such as quantum computing, maintaining a high degree of coherence or quantum entanglement among the qubits is essential.

However, the inevitable interactions among the qubits and environmental noise can ruin the coherence in a very short time within about ten nanoseconds. This is because many interacting qubits constitute a many-body system, said Lai.

Key to the research is insight into delaying thermalization to maintain coherence, considered a critical research goal in quantum computing.

From basic physics, we know that in a system of many interacting particles, for example, molecules in a closed volume, the process of thermalization will arise. The scrambling among many qubits will invariably result in quantum thermalization the process described by the so-called Eigenstate Thermalization Hypothesis, which will destroy the coherence among the qubits, said Lai.

These findings will help move quantum computing forward and will have applications in cryptology, secure communications, and cybersecurity, among other technologies, says Lai.

Reference: Many-body Hilbert space scarring on a superconducting processor 13 October 2022, Nature Physics.DOI: 10.1038/s41567-022-01784-9

Collaborators from the School of Physics and Astronomy, University of Leeds, Leeds, UK, include Jean-Yves Desaules and Zlatko Papic.

Dr. Hekang Li fabricated the device at Zhejiang University. Other collaborators from Zhejiang University, Hangzhou, China, include Pengfei Zhang, Hang Dong, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, and Chao Song.

Additional contributors include Liangtian Zhao and Jie Hao from the Institute of Automation, Chinese Academy of Sciences, Beijing, China and Fangli Liu from QuEra Computing, Boston, MA.

More:
Quantum Computing Breakthrough: Qubits for a Programmable, Solid-State Superconducting Processor - SciTechDaily

The world, and todays employees, need quantum computing more than ever – VentureBeat

Did you miss a session from MetaBeat 2022? Head over to the on-demand library for all of our featured sessions here.

Quantum computing can soon address many of the worlds toughest, most urgent problems.

Thats why the semiconductor legislation Congress just passed is part of a $280 billion package that will, among other things, direct federal research dollars toward quantum computing.

Quantum computing will soon be able to:

The economy and the environment are clearly two top federal government agenda items.Congress in July was poised to pass the most ambitious climate bill in U.S. history. The New York Times said that the bill would pump hundreds of billions of dollars into low-carbon energy technologies like wind turbines, solar panels and electric vehicles and would put the United States on track to slash its greenhouse gas emissions to roughly 40% below 2005 levels by 2030. This could help to further advance and accelerate the adoption of quantum computing.

Low-Code/No-Code Summit

Join todays leading executives at the Low-Code/No-Code Summit virtually on November 9. Register for your free pass today.

Because quantum technology can solve many previously unsolvable problems, a long list of the worlds leading businesses including BMW and Volkswagen, FedEx, Mastercard and Wells Fargo, and Merck and Roche are making significant quantum investments. These businesses understand that transformation via quantum computing, which is quickly advancing with breakthrough technologies, is coming soon. They want to be ready when that happens.

Its wise for businesses to invest in quantum computing because the risk is low and the payoff is going to be huge. As BCG notes: No one can afford to sit on the sidelines as this transformative technology accelerates toward several critical milestones.

The reality is that quantum computing is coming, and its likely not going to be a standalone technology. It will be tied to the rest of the IT infrastructure supercomputers, CPUs and GPUs.

This is why companies like Hewlett Packard Enterprise are thinking about how to integrate quantum computing into the fabric of the IT infrastructure. Its also why Terra Quantum AG is building hybrid data centers that combine the power of quantum and classical computing.

Amid these changes, employees should start now to get prepared. There is going to be a tidal wave of need for both quantum Ph.D.s and for other talent such as skilled quantum software developers to contribute to quantum efforts.

Earning a doctorate in a field relevant to quantum computing requires a multi-year commitment. But obtaining valuable quantum computing skills doesnt require a developer to go back to college, take out a student loan or spend years studying.

With modern tools that abstract the complexity of quantum software and circuit creation, developers no longer require Ph.D.-level knowledge to contribute to the quantum revolution, enabling a more diverse workforce to help businesses achieve quantum advantage. Just look at the winners in the coding competition that my company staged. Some of these winners were recent high school graduates, and they delivered highly innovative solutions.

Leading the software stack, quantum algorithm design platforms allow developers to design sophisticated quantum circuits that could not be created otherwise. Rather than defining tedious low-level gate connections, this approach uses high-level functional models and automatically searches millions of circuit configurations to find an implementation that fits resource considerations, designer-supplied constraints and the target hardware platform. New tools like Nvidias QODA also empower developers by making quantum programming similar to how classical programming is done.

Developers will want to familiarize themselves with quantum computing, whichwill be an integral arrow in their metaphorical quiver of engineering skills. People who add quantum skills to their classical programming and data center skills will position themselves to make more money and be more appealing to employers in the long term.

Many companies and countries are experimenting with and adopting quantum computing. They understand that quantum computing is evolving rapidly and is the way of the future.

Whether you are a business leader or a developer, its important to understand that quantum computing is moving forward. The train is leaving the station will you be on board?

Erik Garcell is technical marketing manager at Classiq.

Welcome to the VentureBeat community!

DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.

If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.

You might even considercontributing an articleof your own!

Read More From DataDecisionMakers

Continue reading here:
The world, and todays employees, need quantum computing more than ever - VentureBeat

Keyed in to quantum computing lab testing at Keysight World – VentureBeat

Its oft said, but bears repeating: The money in the 49er Gold Rush was made by the suppliers much more than the miners. Enduring companies were built by selling picks, shovels and blue jeans.

The story plays out again today. Behind each breakthrough in quantum computing qubit-counts is a large collection of laboratory test equipment. Signal generators, arbitrary waveform generators, digitizers, oscilloscopes, spectrum analyzers and network analyzers are vital as quantum players coax ions, photons and superconducting qubits into calculating problems.

Thoughts along this line piqued our interest as we took part in the quantum computing portions of Keysight Technologies online Keysight World Innovate conference, held recently. Keysight, and competitors such as Anritsu and Tektronix, are busy coming up with tooling to scale the quantum cliffs.

Theres a lot of excitement about this technology and governments all around the world are investing in the research and development required to scale this up, Shohini Ghose, Ph.D., a quantum physicist at Wilfrid Laurier University, said in a keynote at Keysight World.

Its a very exciting time, [but] its not quite clear where this technology will go, she said.

Ghoses emphasis on large-scale investment is borne out by the numbers. Estimates of government and private efforts to spur quantum science and technology, according to Quantum Resources and Careers (QURECA), point to current worldwide investments reaching almost $30 billion, with the overall global quantum technology market projected to reach $42.4 billion by 2027.

Quantum R&D labs likely make up a small portion of the overall test and measurement market, which is expected to increase modestly from $27.7 billion in 2021 to $33.3 billion in 2026. But the market for testing tools used in quantum R&D labs will grow if the promise of quantum computing is to be successfully tapped.

A central part of Keysights test bed for development of quantum computers, sensors and network equipment is its Quantum Control System (QCS), which was introduced in June. QCS components support direct digital conversion of signals and include low-noise distributed clocking. A Keysight manager explained how that works and why it matters in testing.

QCS leverages FPGA timing and synchronizations for multichannel and multichassis operations, said Giampaolo Tardioli, vice president for Keysights Communications Solutions Group, speaking at the event.

Such traits are important as the quantum community looks to scale up its qubit counts. Important as well is software support, added Tardioli, who pointed to Keysights work to support QCS with Python APIs.

Keysights credentials for the quantum quest could not feature more vaunted lineage, as the company grew out of the original Hewlett-Packard test equipment that sprung from the Palo Alto, California, garage of Messrs. Hewlett and Packard in the 1930s. The garage is regularly cited as the birthplace of Silicon Valley.

Keysight has pursued quantum lab tech both organically (almost 100 scientists and engineers were involved in the creation of QCS) and through acquisition. Its quantum road map includes acquisition of modular measurement startup Signadyne in 2016, qubit control software maker Labber in 2020 and error diagnostics specialist Quantum Benchmark in 2021.

Although they still lag behind classical computers by most measures, quantum computers have made steady and perhaps increasing progress in recent years.

But many challenges lie ahead before quantum computers can be integrated into business operations, according to Patrick Moorhead, CEO and chief analyst, Moor Insights and Strategy, who spoke at Keysight World.

The biggest hurdle to jump over is error correction, Moorhead said, noting that a classic computer can do trillions of calculations before it gets an error, but such errors in quantum systems today tend to occur after about 100 to 200 calculations.

Much of Keysights quantum test focus these days is on understanding the impact of errors and how current techniques can remove or elude them. Its an important part of understanding just where the industry is on the road to quantum adoption.

For his part, Moorhead said his analyst firm is expecting a major breakthrough in error correction sometime this year. Even then, there is more prospective work ahead.

If error correction research is progressing at the rate we believe, it could take three to five years until it is usable in systems, he said.

VentureBeat's mission is to be a digital town square for technical decision-makers to gain knowledge about transformative enterprise technology and transact. Discover our Briefings.

Read the original here:
Keyed in to quantum computing lab testing at Keysight World - VentureBeat