Archive for the ‘Quantum Computing’ Category

For The First Time, Scientists Have Entangled Three Qubits on Silicon – ScienceAlert

While quantum computers arealready here, they're very much limited prototypes for now.

It's going to take a while before they're fulfilling anything close to their maximum potential, and we can use them the way we do regular (classical) computers. That moment is now a little nearer though, as scientists have got three entangledqubitsoperating together on a single piece of silicon.

It's the first time that's ever been done, and the silicon material is important: that's what the electronics inside today's computers are based on, so it's another advancement in bridging the gap between the quantum and classical computing realms.

Qubits are the quantum equivalent of the standard bits inside a conventional computer: they can represent several states at once, not just a 1 or a 0, which in theory means an exponential increase in computing power.

The real magic happens when these qubits are entangled, or tightly linked together.

As well as increases in computing power, the addition of more qubits means better error correction a key part of keeping quantum computers stable enough to use them outside of research laboratories.

"Two-qubit operation is good enough to perform fundamental logical calculations," says quantum physicist Seigo Tarucha, from the Riken research institute in Japan.

"But a three-qubit system is the minimum unit for scaling up and implementing error correction."

Using silicon dots as the basis of their qubits means a high level of stability and control can be applied to them, the researchers say. Silicon also makes it more practical to scale these systems up, which is something the team is keen to do in the future.

The process involved entangling two qubits to begin with, in what's known as a two-qubit gate a standard building block of quantum computers. That gate was then combined with a third qubit with an impressively high fidelity of 88 percent (a measure of how reliable the system is).

Each of the quantum silicon dots holds a single electron, with its spin-up and spin-down states doing the encoding. The setup also included an integrated magnet, enabling each qubit to be controlled separately using a magnetic field.

On its own, this isn't going to suddenly put a quantum computer on our desks the setup still required ultra-cold temperatures to operate, for example but together with the other advancements we're seeing, it's undoubtedly a solid step forward.

What's more, the researchers think there's plenty more to come from quantum silicon dots linking together more and more qubits in the same circuit. Full-scale quantum computers could be closer than we think.

"We plan to demonstrate primitive error correction using the three-qubit device and to fabricate devices with ten or more qubits," says Tarucha.

"We then plan to develop 50 to 100 qubits and implement more sophisticated error-correction protocols, paving the way to a large-scale quantum computer within a decade."

The research has been published in Nature Nanotechnology.

View post:
For The First Time, Scientists Have Entangled Three Qubits on Silicon - ScienceAlert

Research on Quantum Computing in Health Care Market 2021: By Growing Rate, Type, Applications, Geographical Regions, and Forecast to 2026 – Northwest…

The business intelligence report on Quantum Computing in Health Care market consists of vital data regarding the growth catalysts, restraints, and other expansion prospects that will influence the market dynamics during 2021-2026. Moreover, it delivers verifiable projections for through a comparative study of the past and present scenario. It claims that the Quantum Computing in Health Care market size is slated to expand with a CAGR of xx% during of the analysis timeline.

Executive summary

The study provides a detailed overview of the market segmentation and offers valuable insights pertaining to revenue prospects, sales, market share of each segment. It further incorporates an in-depth analysis of the competitive hierarchy while highlighting the major market players, as well as the emerging contenders and new entrants.

Request Sample Copy of this Report @ https://www.nwdiamondnotes.com/request-sample/10388

Market analysis structure

Product terrain summary

Application spectrum review:

Competitive hierarchy overview:

Regional landscape outline

Research objectives

To study and analyze the global Quantum Computing in Health Care consumption (value & volume) by key regions/countries, type and application, history data from 2016 to 2020, and forecast to 2026.

To understand the structure of Quantum Computing in Health Care market by identifying its various subsegments.

Focuses on the key global Quantum Computing in Health Care manufacturers, to define, describe and analyze the sales volume, value, market share, market competition landscape, SWOT analysis and development plans in next few years.

To analyze the Quantum Computing in Health Care with respect to individual growth trends, future prospects, and their contribution to the total market.

To share detailed information about the key factors influencing the growth of the market (growth potential, opportunities, drivers, industry-specific challenges and risks).

To project the consumption of Quantum Computing in Health Care submarkets, with respect to key regions (along with their respective key countries).

To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.

To strategically profile the key players and comprehensively analyze their growth strategies.

Request Customization on This Report @ https://www.nwdiamondnotes.com/request-for-customization/10388

View post:
Research on Quantum Computing in Health Care Market 2021: By Growing Rate, Type, Applications, Geographical Regions, and Forecast to 2026 - Northwest...

UChicago, Duality Teams to Pitch at 2021 Chicago Venture Summit – Polsky Center for Entrepreneurship and Innovation – Polsky Center for…

Published on Tuesday, September 14, 2021

Several teams from the University of Chicago and Duality the worlds first accelerator focused exclusively on quantum technologies are pitching at the 2021 Chicago Venture Summit.

The venture capital conference takes place September 27-29 and brings together leading venture capital investors and innovation ecosystem leaders with founders.

>> Register for the Deep Tech Showcase, here.

Kicking off the conference on Monday, September 27, the Polsky Center for Entrepreneurship and Innovation and Argonnes Chain Reaction Innovations program are hosting the 2021 Deep Tech Showcase as part of the larger event. The virtual showcase is from 2:00 to 3:30 p.m. (CST).

UChicago and Duality teams pitching include:

// AddGraft Therapeutics is developing a CRISPR-based therapeutic technology using skin cells to treat addiction. The researchers have developed a therapeutic platform that, through a one-time and first-of-its-kind treatment, will effectively cure someone of alcohol use disorder (AUD). The treatment is long-lasting, highly effective, and minimally invasive.

This is completed by using skin epidermal progenitor cells to deliver one or more therapeutic agents. First, the researchers harvest skin stem cells from an AUD patient and genetically modify them using a precise molecular scissor CRISPR. This process will introduce genes that can produce molecules that will significantly reduce the motivation to take or seek alcohol. Then, they re-implant these skin cells into the original host through a skin graft. After the graft has been re-implanted, the skin graft is able to produce these molecules as a bio engine throughout the lifetime of the graft.

Team members:

// Arrow Immuneis developing next-generation biologics for immuno-oncology in solid tumors. The company is developing protein engineering technology to retain IO molecules in the tumor microenvironment, both to function as monotherapies and to enhance response to checkpoint inhibitor immunotherapy.

The company has developed a powerful approach to mask these compounds such that they are inactive in the periphery yet are activated within the tumor, to limit immune-related adverse events and open the therapeutic window.

Team members:

// Axion Technologies is a Tallahassee, FL-based company, developing a quantum random number generator for high-performance computing systems. Its design enables embedding of unique digital signatures for hardware authentication. The company has received a NSF SBIR award.

Team members:

// Esya Labs mission is the early, precise, and cost-effective detection of neurodegenerative diseases. Its first-in-class product for Alzheimers Diseasewill provide a 360-degree perspective enabling early diagnosis, a personalized treatment plan based on ranked drug effectiveness for any given patient, and monitoring disease progression.

The platform uses synthetic DNA strands that have been engineered to function in a specific way. These so-called DNA nanodevices are used to measure lysosomes performance by creating chemical maps of their activity a process that had previously not been possible. The company in

Team members:

// Nanopattern Technologies is commercializing a quantum dot ink that enables the manufacturing of the next generation of energy-efficient, bright, and fast refresh rate displays and recently received a $1 million NSF SBIR grant.

In addition to displays, NanoPatterns patented technology is capable of patterning oxide nanoparticles for optics applications and Near Infrared (NIR) quantum dots for multispectral sensor applications.

Team members:

// qBraid is developing a cloud-based platform for managed access to other quantum computing software and hardware. The platform includes qBraid Learn and qBraid Lab. qBraid Learn is ready to host any courses developed by the quantum computing ecosystem, but the team has also developed their own educational content. qBraid provides a streamlined experience for first-time learners through its QuBes (quantum beginners) course. Hosted on the qBraid-learn platform, QuBes brings students up to speed on all the background knowledge (mathematics, coding, and physics) necessary to then introduce quantum computing.

qBraid-Lab provides a cloud-based integrated development environment (IDE) for quantum software developers. Unlike other in-browser development platforms, qBraids ecosystem specifically optimizes for quantum computing by providing development environments with all common quantum computing packages pre-installed.

The platform is being used by more than 2500 users from top universities, financial institutions, and various national labs. qBraid has also announced recent collaborations with various government agencies (Quantum Algorithms Institute in British Columbia, the Chicago Quantum Exchange, and the QuSteam) in the US and Canada.

Team members:

// Quantopticon, based in the UK, develops software for simulating quantum-photonic devices. The software has applications chiefly in the budding fields of quantum computing and ultra-secure quantum communications.

Quantopticon specializes in modelling quantum systems of the solid-state type, which are commonly embedded in cavity structures in order to control and enhance specific optical transitions.Its software for modelling interactions of light with matter is underpinned by an original and proprietary general methodology developed by the team from first principles.

The purpose of their software is ultimately to save quantum-optical designers time and money, by eliminating the need to carry out repeated experiments to test and optimize physical prototypes.

Team members:

// Super.tech is developing software that accelerates quantum computing applications by optimizing across the system stack from algorithms to control pulses. The company in August announced the launch of a software platform endeavoring to make quantum computing commercially viable years sooner than otherwise possible.

The platform, calledSuperstaQ, connects applications to quantum computers from IBM Quantum, IonQ, and Rigetti, and optimizes software across the system stack to boost the performance of the underlying quantum computers.

Team members:

Of the teams presenting, Axion, qBraid, Quantopticon, and Super.tech were selected from a competitive pool of applicants from all over the globe and vetted by an internal review process to participate in Cohort 1 of Duality.

Launched in April 2021,Duality is the first-of-its-kind accelerator aimed at supporting next-generation startups focused on quantum science and technology. The 12-month program provides world-class business and entrepreneurship training from theUniversity of Chicago Booth School of Business, Polsky Center, and the opportunity to engage the networks, facilities, and programming from the Chicago Quantum Exchange, the University of Illinois Urbana-Champaign, Argonne National Laboratory, and P33.

Originally posted here:
UChicago, Duality Teams to Pitch at 2021 Chicago Venture Summit - Polsky Center for Entrepreneurship and Innovation - Polsky Center for...

IonQ Scores Quantum Computing Deal With University Of Maryland And Announces Its Tripling 2021 Bookings – Forbes

IONQ

The relationship between higher education and the tech companies I cover as an analyst is close and mutually beneficial. The private sector often provides technology resources, capital, expertise, and knowledge of industry needs and challenges to research institutions, the sandbox of tomorrows tech innovators and leaders.

Quantum technology is at an exciting crossroads now, where it is beginning to migrate out of the realm of research and academia to seek out early commercialization opportunities. Much quicker and more powerful than traditional computing, quantum technology promises to revolutionize everything from medicine to climate science. It could very well change the world as we know it within our lifetimes.

So naturally, I immediately perked up at this weeks news of the University of Maryland (UMD)s $20 million, 3-year investment in quantum computing, the majority of which will go to IonQ, to co-develop a groundbreaking quantum laboratory at the College Park campus of the University.

The National Quantum Lab at Maryland, or Q-Lab for short, looks to be an ambitious project that could pay significant dividends in the efforts to advance and commercialize quantum technology. While I had initially viewed the word investment as a balance sheet impact, versus revenue, IonQ announced today it has tripled its bookings forecast for 2021, suggesting the UMD deal is very much a revenue event. To be clear, the tripling of bookings isnt only UMD, but includes other customers, too.

Lets look at the players, the deal and what it includes.

Something is happening in College Park

Based in College Park, MD, IonQ was founded in 2015 by Christopher Monroe, a professor at the University of Maryland and Jungsang Kim, a professor at Duke University (a great example of higher eds interconnectivity with the private sector). Built on its founders 25 years of academic quantum research, IonQs bread and butter is a subcategory of quantum computing known as trapped ion quantum computing. While a full explanation of trapped ion computing is well beyond the scope of this blog and more in Moor Insights & Strategys Quantum principal analyst Paul Smith-Goodson, know that it is one of the more promising proposed approaches to achieving a large-scale quantum computer.

UMD College Park, for its part, is known as a leading public research universityparticularly in the field of quantum computing. Marylands flagship university has invested approximately $300 million into the field of quantum science over the last 30-plus years and currently hosts over 200 quantum researchers and seven quantum facilities. The campus is already home to the Quantum Startup Foundry and the Mid-Atlantic Quantum Alliance, two organizations committed to advancing the nascent quantum ecosystem.

Q-lab promises to be the worlds first on-campus, commercial-grade quantum user facility. The stated goal of the Q-lab is to significantly democratize access to IonQs state-of-the-art technology, giving students, faculty and researchers hands-on experience with technology such as the companys 32-qubit trapped-ion quantum computer (the most performant quantum computer in operation). Lab users also stand to benefit from the opportunity to collaborate with IonQs quantum scientists and engineering experts, who will co-locate within the lab (which will be located next door to IonQs College Park headquarters).

IonQs market momentum

The announcement of the Q-lab comes along with a flurry of other exciting activity at IonQ. Last month, the company demonstrated its 4X16 Reconfigurable Multicore Quantum Architecture (RMQA), an industry first. IonQ says this breakthrough could enable it to boost its qubit count up to the triple digits on a single chip, also laying the groundwork for theoretical future Parallel Multicore Quantum Processing Units.

Another significant recent announcement from IonQ was that it will now offer its quantum systems on Google Cloud (the first quantum player to do so). For that matter, it is now the only quantum provider available via all three of the major cloud platforms (Microsoft Azure, Google Cloud and AWS) and through direct API access. I see this as another crucial way in which IonQ is democratizing access to quantum computers.

Additionally, the company recently announced a strategic integration with IBM Qiskit. This quantum software development kit will make it easier for quantum programmers to get up and running with IonQs systems. Rounding out the new developments was the announcement of a partnership with SoftBank Investment Advisors to facilitate enterprise deployment of quantum solutions worldwide.

All of these developments, including the Q-lab, considered, its no wonder today IonQ recently tripled its expectations for its 2021 contract bookings, from an original goal of $5 million to an ambitious $15 million. To be clear, the tripling of bookings isnt only UMD, but includes other customers, too. All of this must look good to investors, who will soon get a crack at the Quantum company when it goes public via a special purpose acquisition company (SPAC) later this month (a merger with dMY Technology Group, Inc) under $DMYI.

Wrapping up

With both a preeminent quantum research school and a private sector quantum leader located in College Park, the Maryland city could soon be a (if not the) veritable epicenter of quantum technology in the United States. The Q-lab has the potential to produce the next generation of quantum innovators, generate new quantum IP and draw even more quantum startups and scientific and engineering talent to College Park.

Were likely a bit away from recognizing quantum computings full potential as a paradigm shift. However, IonQs moves this summer demonstrate that the technology is entering a new, exciting phase of commercialization, which should only accelerate the process of innovation at research locations such as the new Q-lab. Ill be watching with interest.

From the business point of view, it is great to see IonQ drive orders and subsequently revenue. I hear from some of the uninformed that theres no money in quantum. I think the doubters are wrong and when we all get a closer look at IonQs financials, I believe there will be some surprises.

Moor Insights & Strategy, like all research and analyst firms, provides or has provided paid research, analysis, advising, or consulting to many high-tech companies in the industry, including 8x8, Advanced Micro Devices, Amazon, Applied Micro, ARM, Aruba Networks, AT&T, AWS, A-10 Strategies,Bitfusion, Blaize, Box, Broadcom, Calix, Cisco Systems, Clear Software, Cloudera,Clumio, Cognitive Systems, CompuCom, Dell, Dell EMC, Dell Technologies, Diablo Technologies, Digital Optics,Dreamchain, Echelon, Ericsson, Extreme Networks, Flex, Foxconn, Frame (now VMware), Fujitsu, Gen Z Consortium, Glue Networks, GlobalFoundries, Google (Nest-Revolve), Google Cloud, HP Inc., Hewlett Packard Enterprise, Honeywell, Huawei Technologies, IBM, Ion VR,IonQ, Inseego, Infosys, Intel, Interdigital, Jabil Circuit, Konica Minolta, Lattice Semiconductor, Lenovo, Linux Foundation,MapBox, Marvell,Mavenir, Marseille Inc, Mayfair Equity, Meraki (Cisco),Mesophere, Microsoft, Mojo Networks, National Instruments, NetApp, Nightwatch, NOKIA (Alcatel-Lucent), Nortek,Novumind, NVIDIA, Nuvia, ON Semiconductor, ONUG, OpenStack Foundation, Oracle, Poly, Panasas,Peraso, Pexip, Pixelworks, Plume Design, Poly,Portworx, Pure Storage, Qualcomm, Rackspace, Rambus,RayvoltE-Bikes, Red Hat,Residio, Samsung Electronics, SAP, SAS, Scale Computing, Schneider Electric, Silver Peak, SONY,Springpath, Spirent, Splunk, Sprint, Stratus Technologies, Symantec, Synaptics, Syniverse, Synopsys, Tanium, TE Connectivity,TensTorrent,TobiiTechnology, T-Mobile, Twitter, Unity Technologies, UiPath, Verizon Communications,Vidyo, VMware, Wave Computing,Wellsmith, Xilinx, Zebra,Zededa, and Zoho which may be cited in blogs and research.

Patrick was ranked the #1 analyst out of 8,000 in the ARInsights Power 100 rankings and the #1 most cited analyst as ranked by Apollo Research. Patrick founded Moor

Patrick was ranked the #1 analyst out of 8,000 in the ARInsights Power 100 rankings and the #1 most cited analyst as ranked by Apollo Research. Patrick founded Moor Insights & Strategy based on in his real-world world technology experiences with the understanding of what he wasnt getting from analysts and consultants. Moorhead is also a contributor for both Forbes, CIO, and the Next Platform. He runs MI&S but is a broad-based analyst covering a wide variety of topics including the software-defined datacenter and the Internet of Things (IoT), and Patrick is a deep expert in client computing and semiconductors. He has nearly 30 years of experience including 15 years as an executive at high tech companies leading strategy, product management, product marketing, and corporate marketing, including three industry board appointments.Before Patrick started the firm, he spent over 20 years as a high-tech strategy, product, and marketing executive who has addressed the personal computer, mobile, graphics, and server ecosystems. Unlike other analyst firms, Moorhead held executive positions leading strategy, marketing, and product groups. He is grounded in reality as he has led the planning and execution and had to live with the outcomes.Moorhead also has significant board experience. He served as an executive board member of the Consumer Electronics Association (CEA), the American Electronics Association (AEA) and chaired the board of the St. Davids Medical Center for five years, designated by Thomson Reuters as one of the 100 Top Hospitals in America.

Original post:
IonQ Scores Quantum Computing Deal With University Of Maryland And Announces Its Tripling 2021 Bookings - Forbes

Quantum Computing Will Soon Takeover the Tech-Sphere Leading the Digital Era – Analytics Insight

The word quantum gained momentum in the late twentieth century as a descriptor i.e., something so huge that it defied the normal adjectives. For instance, a quantum leap is an emotional headway with lots of drama in it. Now, at the point when quantum is applied to computing, nonetheless, we are without a doubt entering a time of emotional progression with dramatic advancement.

Quantum computing is an innovation that is dependent on the standards and principles of quantum theory, which clarifies the idea of energy and matter on the atomic and subatomic levels. It depends on the presence of mind-bending quantum-mechanical phenomena, like superposition and entanglement.

Erwin Schrdingers popular 1930s psychological experiment including a cat that was both dead and alive simultaneously was expected to feature the evident idiocy of superposition, the rule that quantum frameworks can exist in various states at the same time until noticed or estimated. Today, quantum computers contain many qubits (quantum bits), which exploit that very rule. Each qubit exists in a superposition of zero and one (for example has non-zero probabilities to be a zero or a one) until estimated. The improvement of qubits has suggestions for managing gigantic measures of data and accomplishing already impossible degrees of computing efficiency that are the tempting capability of quantum computing.

Different parties are adopting various strategies to quantum computing, so a single clarification of how it functions would be subjective. In a qubit, the whole circle can hold countless different states, and relating those states between qubits empowers certain connections that make quantum processing appropriate for an assortment of explicit assignments that old-style figuring cant achieve. Making qubits and keeping up with their reality adequately long to achieve quantum registering undertakings is a continuous ongoing challenge.

These are only the beginnings of the strange universe of quantum mechanics. By and by, in any case, a qubit of clever obscurity on how quantum figuring functions should get the job done for the time being. Quantum computings purpose is to help and expand the capacities of classical computing. Quantum computers will play out specific tasks significantly more productively than classical computers, giving us another device for explicit applications. Quantum computers wont replace their classical partners. Indeed, quantum computers require classical computers to help their specific capacities, like system optimization.

Quantum computers will be valuable in advancing answers for challenges in different fields like energy, finance, medical care, aviation among others. Their abilities will assist us with relieving infections, work on worldwide monetary business sectors, detangle traffic, battle environmental change and the sky is the only limit from there for the wonders quantum computing can make. For example, it can possibly accelerate drug discovery and advancement, and to work on the accuracy of the atmospheric models that are used to follow up and clarify environmental change and its hazardous impacts.

Intels 17-qubit superconducting test chip for quantum computing has unique features for improved connectivity and better electrical and thermo-mechanical performance. (Credit: Intel Corporation).

Not only this, but quantum computing is also responsible for the investments of millions of USDs into various giant corporations like IBM, Intel, Microsoft, etc. expecting an inevitable future of quantum computing led by qubits.

Quantum computers could likewise deliver correspondence safer in the manner data is teleported. Theres one more term related to science fiction films. Notwithstanding, the marvel of entanglement lies behind quantum mechanics: two qubits are connected together so that a change to one makes a change its relating qubit. This happens without delays, over any distance, and obviously with no actual association like links or radio waves.

Utilizing this thought key codes for information transmission could be produced. The shrewd thing here is that the quantum condition of the qubit changes with each unapproved access for instance, an assault from a programmer. The correspondence accomplices would see this as an unsettling influence in their correspondence, would consequently be cautioned, and could utilize another key. This way, we could actually put an end to cyber-attacks.

This way, quantum computings future glows brightly with no turnbacks leading to a glorious leap into the most advanced digital era.

Share This ArticleDo the sharing thingy

Read more:
Quantum Computing Will Soon Takeover the Tech-Sphere Leading the Digital Era - Analytics Insight