Archive for the ‘Quantum Computing’ Category

BlackBerry and NXP Join Forces to Help Companies Prepare For and Prevent Y2Q Post-Quantum Cyber Attacks – BlackBerry

WATERLOO, ONTARIO May 25, 2022 BlackBerry Limited (NYSE: BB; TSX: BB)today announced it will provide support for quantum-resistant secure boot signatures for NXP Semiconductors (NASDAQ: NXPI) crypto-agile S32G vehicle networking processors in a demonstration to illustrate how to mitigate the risk of potential quantum computing attacks on in-vehicle software.

The new integration will allow software to be digitally signed using the National Institute of Standards and Technologys (NIST) recently endorsed CRYSTALS Dilithium digital signature scheme that will be quantum resistant, providing peace of mind to those relying on and delivering long lifecycle assets such as systems in critical infrastructure, industrial controls, aerospace and military electronics, telecommunications, transportation infrastructure, and connected cars. The collaboration is set to guard against an increasingly risky future when quantum computers will be able to easily break traditional code signing schemes.

For more information, register to attend the one hour Post-Quantum Cyber Attacks, how to Prepare and Prevent webinar on June 9, 2022 at 11:00 a.m. ET.

While quantum computing promises to deliver huge leaps forward in processing power, it also has the potential to render today's public key cryptography useless. In recent months, NATO, the White House and NIST have all taken steps to prepare for a Y2Q scenario in which quantum computers become weaponized by threat actors and many widely used security methods become useless against next-generation attacks.

The BlackBerry Certicom Code Signing and Key Management Server leverages the NXP S32G chips secure boot flow to achieve fast and agile quantum protection. Using quantum-resistant signature schemes such as Dilithium for low-level device firmware, over-the-air software updates and software bills of material (SBOMs) mitigates the risk of potential quantum computing attacks on critical software updates, addressing a major security concern for a number of industries.

As quantum computers continue to advance in development, its increasingly important to work to secure todays systems against these future threats, said Joppe Bos, Senior Principal Cryptographer at NXP Semiconductors. Collaborating with BlackBerry strengthens our solution to address the critical need to harden code signing and software update infrastructure against future cryptosystem vulnerabilities.

In the lead up to Y2K, US business spent upwards of $100 billion to avoid calamity and the issue was simply a matter of adding two digits to the date field. Y2Q, when quantum attacks become possible, is on another level, posing a significant threat to industries selling or operating long-lived assets with updatable software, said Jim Alfred, VP, BlackBerry Technology Solutions. NXP shares our vision of mitigating the risk of quantum computing concerns and, thanks to their support for hash-based signatures, together we can provide cybersecurity teams with the tools they need now to prevent their existing security measures from becoming obsolete.

To learn more about the Code Signing and Key Management Server and why BlackBerry Certicom technology is widely deployed in smartphone chips, smart meters, car telematics, and IoT devices, please visit http://www.certicom.com.

###

About BlackBerry

BlackBerry (NYSE: BB; TSX: BB) provides intelligent security software and services to enterprises and governments around the world. The company secures more than 500M endpoints including over 195M vehicles. Based in Waterloo, Ontario, the company leverages AI and machine learning to deliver innovative solutions in the areas of cybersecurity, safety and data privacy solutions, and is a leader in the areas of endpoint security, endpoint management, encryption, and embedded systems. BlackBerrys vision is clear - to secure a connected future you can trust.

BlackBerry. Intelligent Security. Everywhere.

For more information, visit BlackBerry.com and follow @BlackBerry.

NXP and the NXP logo are trademarks ofNXP B.V. All other product or service names are the property of their respective owners. All rights reserved.2022 NXP B.V.

Trademarks, including but not limited to BLACKBERRY and EMBLEM Design are the trademarks or registered trademarks of BlackBerry Limited, and the exclusive rights to such trademarks are expressly reserved. All other trademarks are the property of their respective owners. BlackBerry is not responsible for any third-party products or services.

###

Media Contact:BlackBerry Media Relations+1 (519) 597-7273mediarelations@BlackBerry.com

Go here to see the original:
BlackBerry and NXP Join Forces to Help Companies Prepare For and Prevent Y2Q Post-Quantum Cyber Attacks - BlackBerry

Back to the Future: Protecting Against Quantum Computing – Nextgov

The previous two years have proven the importance of proactively working to secure our data, especially as organizations underwent digital transformations and suffered increased cyberattacks as a result. For those organizations that have been breached, but their data hasnt yet been exploited and released to the wild, it may already be too late.

Organizations that have already experienced a data breach may become victims of harvest today, decrypt tomorrow or capture-now-decrypt-later attacks. These attacks, also referred to as harvesting for short, capitalize on known vulnerabilities to steal data that may not even be truly accessible using todays decryption technologies.

These attacks require long-term planning and projections on the advancement of quantum-computing technologies. While these technologies may still be years away from being commercially available and widely used, organizations should look to protect against these threats now to prevent themselves from becoming a future casualty.

Before getting into more detail on the future threat posed by quantum computing, we should look to a historic example to inform our present decision-making.

Lessons from the Enigma

In 1919 a Dutchman invented an encoding machine that was universally adopted by the German army, called the Enigma. Unbeknownst to Germany, the Allied powers managed to break the coding scheme, and were able to decode some messages as early as 1939, when the first German boots set foot in Poland. For years, however, the German army believed the Enigma codes were unbreakable and was communicating in confidence, never realizing their messages were out in the open.

History may already be repeating itself. I cant help but think that most organizations today also believe that their encrypted data is safe, but someone else may be close to, or already, reading their secure mail without them even knowing.

Todays modern cryptography is often deemed unbreakable, but a big, shiny black building in Maryland suggests that governments may be better at this than is widely believed. Although a lot of credit goes to the magical and elusive quantum computer, the reality is different: poor implementations of crypto suites are the primary vector for breaking encryption of captured traffic. So are certificates captured through other means, brute-forced passwords and even brute-forced crypto, because insufficient entropy is used to generate random numbers.

All these techniques are part of the arsenal of any nation who wants to strategically collect information on the happenings of other international playerswhether government or private companies. These techniques also require higher levels of coordination and financial backing to be a successful part of an intelligence strategy. As I continue to see, when the value of the captured information is high enough, the investment is worth it. Consider then the vast data centers being built by many governments: they are full of spinning disks of memory storage just in case current approaches don't yield access. Data storage has become an investment in the future of intelligence gathering.

Looking towards the future

Harvesting attacks does not just work as a strategy for quantum computers. We will likely have more powerful processors for brute-forcing in the future. Additionally, other types of stochastic computation machines, such as spintronics, are showing promise and even the de-quantification of popular algorithms may one day see a binary computer version of Peter Shors algorithm. The latter helps us explain how quantum computing may help to make quick work of current encryption techniques. This will allow breaking of Diffie-Hellman key exchanges or RSA on a conventional computer in smaller time frames.

So how do we shield ourselves? It is hard to imagine armoring oneself against any possible threat to encryption. Just like it is difficult to predict exactly which stocks will do well, and which ones won't. There are too many factors and too much chaos. One is left with only the option of diversification: using an out-of-band key distributing strategy that allows multiple paths for key and data to flow, and a range of algorithms and keys to be used. By diversifying our cryptographic approaches we are also able to minimize the damage in case a particular strategy fails us. Monocultures are at risk of pandemics, let's not fall victim to encryption monoculture as we move into the future.

It is past time to take steps now that will protect organizations from future threats. This includes developing actionable standards. Both federal agencies and the private sector need to embrace quantum-safe encryption. Additionally, they should look to develop next-generation, standards-based systems that will address current encryption method shortcomings and poor key management practices. This will help to ensure not only quantum-safe protection from future threats, but also stronger security from contemporary threats.

Organizations face a dizzying array of threats and need to constantly remain vigilant to thwart attacks. While looking to protect against current threats is certainly important, organizations should begin projecting future threats, including the threat posed by quantum computing. As technology continues to advance each day, one should remember that past encryption, like the Enigma machine, didnt remain an enigma for long and was broken in time. The advent of quantum computing may soon make our unbreakable codes go the way of the dinosaur. Prepare accordingly.

Follow this link:
Back to the Future: Protecting Against Quantum Computing - Nextgov

Earning Releases: IonQ, Rigetti, and Arqit – Quantum Computing Report

Three notable earnings releases were made in the past few days and it is interesting to review them and see the progress each has made in the past year.

IonQ announced Q1 revenue of $2.0 million, bookings of $4.2 million, and EBITDA (Earnings before interest, taxes, depreciation, and amortization) loss of $10.3 million. This compares to their forecast made at the end of March of Q1 revenue between $1.8 to $2.0 million and bookings of $3 to $4 million. They are continuing to estimate full year 2022 revenue at $10.2 to $10.7 million, but have raised their estimate of 2022 bookings from$20.0 to $24.0 million to a new range of $23.0 to $27.0 million. The company ended the period with a cash and short term investments balance of about $415 million.

In other announcements during the release, they discussed their technology roadmap and a new system called Forte, which we covered in more detail here. They also mentioned they are building a second 32 qubit Aria system to meet customer demand. One interesting comment for us was their mention of rising customer interest in purchasing systems for on-premise use which may result in a potential increase in their forecast of contract bookings from their original plan. Reasons for this include customers desire to avoid waiting in a queue with other customers for access to a cloud based system as well as data security concerns.

Additional details from IonQs Q1 earnings release can be seen in a press release posted on their website here as well as webcast recording of their Q1 earnings call here.

Rigetti report Q1 revenue of $2.1 million and an EBITDA loss of $13.9 million. The Q1 2022 revenue was lower than Q1 2021 which had revenue of $2.4 million. Rigetti attributed this to the completion of the first phase of a large government agency project in the first quarter of 2021. The company forecasted total 2022 revenue to be between $12 and $13 million with and EBITDA loss for the year in the range between $52 and $53 million. The company ended the period with a cash balance of about $206 million.

Rigetti also discussed their future roadmap plans which we covered here. They also discussed some of the challenges they are facing in their technical developments including higher than anticipated costs for labor, equipment, and system components, market and supply chain conditions, and available working capital. You can read Rigettis press release with their earnings announcement here and listen to the webcast discussing the results here.

Arqit reported their results for their first fiscal half year which covers the six month period ending on March 31, 2022. They achieved revenue for the period of $12.3 million with an adjusted loss before tax of $14.4 million. The revenue came from $5.3 million in QuantumCloud revenue and $7.0 million from a project contract from the European Space Agency.

The company also announced announced that shareholders holding 105.9 million of the 108.6 million shares currently subject to lock-up agreements that were due to expire have volunteered to extend their lock-up agreements until September. The company ended the period with a cash balance of $82 million. Arqits press release with their financial results can be accessed here.

May 18, 2022

More here:
Earning Releases: IonQ, Rigetti, and Arqit - Quantum Computing Report

Special Operations Command trying to prepare for quantum computing threat – FedScoop

Written by Jon Harper May 19, 2022 | FEDSCOOP

U.S. Special Operations Command is worried about the future threat from adversaries quantum technologies, and officials are trying to get out ahead of the problem.

Improving intelligence fusion through real-time data integration is a key pillar of SOCOMs plans for digital transformation. That data must not only be gathered, fused and transferred to the appropriate end users; it also has to be secured a challenge that will grow with the development of quantum computing capabilities.

How do we get after the way those bits and bytes interact with each other and create the intelligence that we need, while at the same time protecting that data, you know, ensuring that the data is trustworthy? Thomas Kenney, chief data officer at Special Operations Command, said Thursday at the SOFIC conference.

Heres a really interesting aspect of this that were looking at today because we know in a few years this is going to become really important by some accounts, were less than eight years away from quantum cryptography being able to break the non-quantum cryptography that we have today We need an answer for that, he said.

When the technology is ready for prime time, officials say it could be a game changer.

Data may very easily be decrypted by a capability that has a quantum decrypt capability, Kenney warned.

The time is now to be thinking about that problem before adversaries have already acquired that capability, he added.

Technology developers are putting a lot of effort into quantum computing, he noted, highlighting the implications of quantum processing.

One of the really interesting tenants of quantum computing is that you can compute multiple outcomes simultaneously. And when you think about the speed of battle and where were going to, that ability will be absolutely essential, Kenney said.

Quantum computing is being played with right now. And we look at where were going for quantum cryptography, we need about a factor of 1,000 qubits to be able to get to that next level, he said.

A qubit is a computing unit that leverages the principle of superposition the ability of quantum systems to exist in two or more states simultaneously to encode information, the Congressional Research Service explained in a recent report on the technology.

Whereas a classical computer encodes information in bits that can represent binary states of either 0 or 1, a quantum computer encodes information in qubits, each of which can represent 0, 1, or a combination of both at the same time. As a result, the power of a quantum computer increases exponentially with the addition of each qubit, according to CRS.

Being able to have multiple outcomes calculated at the same time on a battlefield thats happening extremely fast is going to be mission essential to us. Are the technologies there today? Maybe not. But they certainly need to be there in the future, so its something that were taking a look at, Kenney said.

Earlier this month, President Biden signed two new policy directives aimed at advancing U.S. quantum technologies and the ability to defend U.S. infrastructure against the threat posed by quantum computers.

More here:
Special Operations Command trying to prepare for quantum computing threat - FedScoop

Quantum computing just might save the planet – McKinsey

The emerging technology of quantum computingcould revolutionize the fight against climate change, transforming the economics of decarbonization and becoming a major factor in limiting global warming to the target temperature of 1.5C (see sidebar What is quantum computing?).

Even though the technology is in the early stages of developmentexperts estimate the first generation of fault-tolerant quantum computing will arrive in the second half of this decadebreakthroughs are accelerating, investment dollars are pouring in, and start-ups are proliferating. Major tech companies have already developed small, so-called noisy intermediate-scale quantum (NISQ) machines, though these arent capable of performing the type of calculations that fully capable quantum computers are expected to perform.

Countries and corporates set ambitious new targets for reducing emissions at the 2021 United Nations Climate Change Conference (COP26). Those goals, if fully met, would represent an extraordinary annual investment of $4 trillion by 2030, the largest reallocation of capital in human history. But the measures would only reduce warming to between 1.7C and 1.8C by 2050, far short of the 1.5C level believed necessary to avoid catastrophic, runaway climate change.

Meeting the goal of net-zero emissions that countries and some industries have committed to wont be possible without huge advances in climate technology that arent achievable today. Even the most powerful supercomputers available now are not able to solve some of these problems. Quantum computing could be a game changer in those areas. In all, we think quantum computing could help develop climate technologies able to abate carbon on the order of 7 gigatons a year of additional CO2 impact by 2035, with the potential to bring the world in line with the 1.5C target.

Quantum computing could help reduce emissions in some of the most challenging or emissions-intensive areas, such as agriculture or direct-air capture, and could accelerate improvements in technologies required at great scale, such as solar panels or batteries. This article offers a look at some of the breakthroughs the technology could permit and attempts to quantify the impact of leveraging quantum-computer technology that are expected become available this decade.

Quantum computing could bring about step changes throughout the economy that would have a huge impact on carbon abatement and carbon removal, including by helping to solve persistent sustainability problems such as curbing methane produced by agriculture, making the production of cement emissions-free, improving electric batteries for vehicles, developing significantly better renewable solar technology, finding a faster way to bring down the cost of hydrogen to make it a viable alternative to fossil fuels, and using green ammonia as a fuel and a fertilizer.

Addressing the five areas designated in the Climate Math Reportas key for decarbonization, we have identified quantum-computing use cases that can pave the way to a net-zero economy. We project that by 2035 the use cases listed below could make it possible to eliminate more than 7 gigatons of CO2 equivalent (CO2e) from the atmosphere a year, compared with the current trajectory, or in aggregate more than 150 gigatons over the next 30 years (Exhibit 1).

Exhibit 1

Batteries are a critical element of achieving zero-carbon electrification. They are required to reduce CO2 emissions from transportation and to obtain grid-scale energy storage for intermittent energy sources such as solar cells or wind.

Improving the energy density of lithium-ion (Li-ion) batteries enables applications in electric vehicles and energy storage at an affordable cost. Over the past ten years, however, innovation has stalledbattery energy density improved 50 percent between 2011 and 2016, but only 25 percent between 2016 and 2020, and is expected to improve by just 17 percent between 2020 and 2025.

Recent research has shown that quantum computing will be able to simulate the chemistry of batteries in ways that cant be achieved now. Quantum computing could allow breakthroughs by providing a better understanding of electrolyte complex formation, by helping to find a replacement material for cathode/anode with the same properties and/or by eliminating the battery separator.

As a result, we could create batteries with 50 percent higher energy density for use in heavy-goods electric vehicles, which could substantially bring forward their economic use. The carbon benefits to passenger EVs wouldnt be huge, as these vehicles are expected to reach cost parity in many countries before the first generation of quantum computers is online, but consumers might still enjoy cost savings.

In addition, higher-density energy batteries can serve as a grid-scale storage solution. The impact on the worlds grids could be transformative. Halving the cost of grid-scale storage could enable a step change in the use of solar power, which is becoming economically competitive but is challenged by its generation profile. Our modeling suggests that halving the cost of solar panels could increase their use by 25 percent in Europe by 2050 but halving both solar and batteries might increase solar use by 60 percent (Exhibit 2). Geographies without such a high carbon price will see even greater impacts.

Exhibit 2

Through the combination of use cases described above, improved batteries could bring about an additional reduction in carbon dioxide emissions of 1.4 gigatons by 2035.

Many parts of the industry produce emissions that are either extremely expensive or logistically challenging to abate.

Cement is a case in point. During calcination in the kiln for the process of making clinker, a powder used to make cement, CO2 is released from raw materials. This process accounts for approximately two-thirds of cement emissions.

Alternative cement-binding materials (or clinkers) can eliminate these emissions, but theres currently no mature alternative clinker that can significantly reduce emissions at an affordable cost.

There are many possible permutations for such a product, but testing by trial and error is time-consuming and costly. Quantum computing can help to simulate theoretical material combinations to find one that overcomes todays challengesdurability, availability of raw materials and efflorescence (in the case of alkali-activated binders). This would have an estimated additional impact of 1 gigaton a year by 2035.

Solar cells will be one of the key electricity-generation sources in a net-zero economy. But even though they are getting cheaper, they still are far from their theoretical maximum efficiency.

Todays solar cells rely on crystalline silicon and have an efficiency on the order of 20 percent. Solar cells based on perovskite crystal structures, which have a theoretical efficiency of up to 40 percent, could be a better alternative. They present challenges, however, because they lack long-term stability and could, in some varieties, be more toxic. Furthermore, the technology has not been mass produced yet.

Quantum computing could help tackle these challenges by allowing for precise simulation of perovskite structures in all combinations using different base atoms and doping, thereby identifying higher efficiency, higher durability, and nontoxic solutions. If the theoretical efficiency increase can be reached, the levelized cost of electricity (LCOE) would decrease by 50 percent.

By simulating the impact of cheaper and more efficient quantum-enabled solar panels, we see a significant increase in use in areas with lower carbon prices (China, for example). This is also true of countries in Europe with high irradiance (Spain, Greece) or poor conditions for wind energy (Hungary). The impact is magnified when combined with cheap battery storage, as discussed above.

This technology could abate an additional 0.4 gigatons of CO2 emissions by 2035.

Hydrogen is widely considered to be a viable replacement for fossil fuels in many parts of the economy, especially in industry where high temperature is needed and electrification isnt possible or sufficient, or where hydrogen is needed as a feedstock, such as steelmaking or ethylene production.

Before the 2022 gas price spikes, green hydrogen was about 60 percent more expensive than natural gas. But improving electrolysis could significantly decrease the cost of hydrogen.

Polymer electrolyte membrane (PEM) electrolyzers split water and are one way to make green hydrogen. They have improved in recent times but still face two major challenges.

Quantum computing can help model the energy state of pulse electrolysis to optimize catalyst usage, which would increase efficiency. Quantum computing could also model the chemical composition of catalysts and membranes to ensure the most efficient interactions. And it could push the efficiency of the electrolysis process up to 100 percent and reduce the cost of hydrogen by 35 percent. If combined with cheaper solar cells discovered by quantum computing (discussed above), the cost of hydrogen could be reduced by 60 percent (Exhibit 3).

Exhibit 3

Increased hydrogen use as a result of these improvements could reduce CO2 emissions by an additional 1.1 gigatons by 2035.

Ammonia is best known as a fertilizer, but could also be used as fuel, potentially making it one of the best decarbonization solutions for the worlds ships. Today, it represents 2 percent of total global final energy consumption.

For the moment, ammonia is made through the energy-intensive Haber-Bosch process using natural gas. There are several options for creating green ammonia, but they rely on similar processes. For example, green hydrogen can be used as a feedstock, or the carbon dioxide emissions that are caused by the process can be captured and stored.

However, there are other potential approaches, such as nitrogenase bioelectrocatalysis, which is how nitrogen fixation works naturally when plants take nitrogen gas directly from the air and nitrogenase enzymes catalyze its conversion into ammonia. This method is attractive because it can be done at room temperature and at 1 bar pressure, compared with 500C at high pressure using Haber-Bosch, which consumes large amounts of energy (in the form of natural gas) (Exhibit 4).

Exhibit 4

Innovation has reached a stage where it might be possible to replicate nitrogen fixation artificially, but only if we can overcome challenges such as enzyme stability, oxygen sensitivity, and low rates of ammonia production by nitrogenase. The concept works in the lab but not at scale.

Quantum computing can help simulate the process of enhancing the stability of the enzyme, protecting it from oxygen and improving the rate of ammonia production by nitrogenase. That would result in a 67 percent cost reduction over todays green ammonia produced through electrolysis, which would make green ammonia even cheaper than traditionally produced ammonia. Such a cost reduction could not only lessen the CO2 impacts of the production of ammonia for agricultural use but could also bring forward the breakeven for ammonia in shippingwhere it is expected to be a major decarbonization optionforward by ten years.

Using quantum computing to facilitate cheaper green ammonia as a shipping fuel could abate an additional CO2 by 0.4 gigatons by 2035.

Carbon capture is required to achieve net zero. Both types of carbon capturepoint source and directcould be aided by quantum computing.

Point-source carbon capture allows CO2 to be captured directly from industrial sources such as a cement or steel blast furnace. But the vast majority of CO2 capture is too expensive to be viable for now, mainly because it is energy intense.

One possible solution: novel solvents, such as water-lean and multiphase solvents, which could offer lower-energy requirements, but it is difficult to predict the properties of the potential material at a molecular level.

Quantum computing promises to enable more accurate modeling of molecular structure to design new, effective solvents for a range of CO2 sources, which could reduce the cost of the process by 30 to 50 percent.

We believe this has significant potential to decarbonize industrial processes, which could lead to additional decarbonization of up to 1.5 gigatons a year, including cement. If the cement clinker approach described above is successful, this would still have an effect of 0.5 gigatons a year, due to fuel emissions. In addition, alternative clinkers may not be available in some regions.

Direct-air capture, which involves sucking CO2 from the air, is a way to address carbon removals. While the Intergovernmental Panel on Climate Change says this approach is required to achieve net zero, it is very expensive (ranging from $250 to $600 per ton a day today) and even more energy intensive than point-source capture.

Adsorbents are best suited for effective direct-air capture and novel approaches, such as metal organic frameworks, or MOFs, have the potential to greatly reduce the energy requirements and the capital cost of the infrastructure. MOFs act like a giant spongeas little as a gram can have a surface area larger than a football fieldand can absorb and release CO2 at far lower temperature changes than conventional technology.

Quantum computing can help advance research on novel adsorbents such as MOFs and resolve challenges arising from sensitivity to oxidation, water, and degradation caused by CO2.

Novel adsorbents that have a higher adsorption rate could reduce the cost of technology to $100 per ton of CO2e captured. This could be a critical threshold for uptake, given that corporate climate leaders such as Microsoft have publicly announced an expectation to pay $100 a ton long term for the highest-quality carbon removals. This would lead to an additional CO2reduction of 0.7 gigatons a year by 2035.

Twenty percent of annual greenhouse-gas emissions come from agricultureand methane emitted by cattle and dairy is the primary contributor (7.9 gigatons of CO2e, based on 20-year global-warming potential).

Research has established that low-methane feed additives could effectively stop up to 90 percent of methane emissions. Yet applying those additives for free-range livestock is particularly difficult.

An alternative solution is an antimethane vaccine that produces methanogen-targeting antibodies. This method has had some success in lab conditions, but in a cows gutchurning with gastric juices and foodthe antibodies struggle to latch on to the right microbes. Quantum computing could accelerate the research to find the right antibodies by precise molecule simulation instead of a costly and long trial-and-error method. With estimated uptake determined according to data from the US Environmental Protection Agency, we arrive at carbon reduction of up to an additional 1 gigaton a year by 2035.

Another prominent use case in agriculture is green ammonia discussed as a fuel above, where todays Haber-Bosch process uses large amounts of natural gas. Using such an alternative process could have an additional impact of up to 0.25 gigatons a year by 2035, replacing current conventionally produced fertilizers.

There are many more ways that quantum computing could be applied to the fight against climate change. Future possibilities include identification of new thermal-storage materials, high-temperature superconductors as a future base for lower losses in grids, or simulations to support nuclear fusion. Use cases arent limited to climate mitigation, but can also apply to adaptation, for example, improvements in weather prediction to give greater warning of major climatic events. But progress on those innovations will have to wait because first-generation machines will not be powerful enough for such breakthroughs (see sidebar Methodology).

The leap in CO2 abatement could be a major opportunity for corporates. With $3 to $5 trillion in value at stake in sustainability, according to McKinsey research, climate investment is an imperative for big companies. The use cases presented above represent major shifts and potential disruptions in these areas, and they are associated with huge value for players who take the lead. This opportunity is recognized by industry leaders who are already developing capabilities and talent.

Nevertheless, quantum technology is in the early stage and comes with the risks linked to leading-edge technology development, as well as tremendous cost. We have highlightedthe stage of the industry in the Quantum Technology Monitor. The risk to investors can be mitigated somewhat through steps such as onboarding technical experts to run in-depth diligence, forming joint investments with public entities or consortia, and investing in companies that bundle various ventures under one roof and provide the necessary experience to set up and scale these ventures.

In addition, governments have an important role to play by creating programs at universities to develop quantum talent and by providing incentives for quantum innovation for climate, particularly for use cases that today do not have natural corporate partners, such as disaster prediction, or that arent economical, such as direct-air capture. Governments could start more research programs like the partnership between IBM and the United Kingdom, the collaboration between IBM and Fraunhofer-Gesellschaft, the publicprivate partnership Quantum Delta in the Netherlands, and the collaboration between the United States and the United Kingdom. By tapping into quantum computing for sustainability, countries will accelerate the green transition, achieve national commitments, and get a head start in export markets. But even with those measures, the risk and expense remain high (Exhibit 5).

Exhibit 5

Here are some questions corporates and investors need to ask before taking a leap into quantum computing.

Is quantum computing relevant for you?

Determine whether there are use cases that can potentially disrupt your industry or your investments and address the decarbonization challenges of your organization. This article has highlighted anecdotal use cases across several categories to showcase the potential impact of quantum computing, but weve identified more than 100 sustainability-relevant use cases where quantum computing could play a major role. Quickly identifying use cases that are applicable to you and deciding how to address them can be highly valuable, as talent and capacity will be scarce in this decade.

How do I approach quantum computing now, if it is relevant?

Once you have engaged on quantum computing, building the right kind of approach, mitigating risk and securing access to talent and capacity are key.

Because of the high cost of this research, corporates can maximize their impact by forming partnerships with other players from their value chains and pooling expense and talent. For example, major consumers of hydrogen might join up with electrolyzer manufacturers to bring down the cost and share the value. These arrangements will require companies to figure out how to share innovation without losing competitive advantage. Collaborations such as joint ventures or precompetitive R&D could be an answer. We also foresee investors willing to support such endeavors to potentially remove some of the risk for corporates. And there are large amounts of dedicated climate finance available, judging by pledges made at COP26 that aim to reach the target of $100 billion a year in spending.

Do I have to start now?

While the first fault-tolerant quantum computer is several years away, it is important to start development work now. There is significant prework to be done to get to a maximal return on the significant investment that application of quantum computing will require.

Determining the exact parameters of a given problem and finding the best possible application will mean collaboration between application experts and quantum-computing technicians well versed in algorithm development. We estimate algorithm development would take up to 18 months, depending on the complexity.

It will also take time to set up the value chain, production, and go-to-market to ensure they are ready when quantum computing can be deployed and to fully benefit from the value created.

Quantum computing is a revolutionary technology that could allow for precise molecular-level simulation and a deeper understanding of natures basic laws. As this article shows, its development over the next few years could help solve scientific problems that until recently were believed to be insoluble. Clearing away these roadblocks could make the difference between a sustainable future and climate catastrophe.

Making quantum computing a reality will require an exceptional mobilization of resources, expertise, and funds. Only close cooperation between governments, scientists, academics, and investors in developing this technology can make it possible to reach the target for limiting emissions that will keep global warming at 1.5C and save the planet.

More:
Quantum computing just might save the planet - McKinsey