Archive for the ‘Quantum Computing’ Category

Looking Back on The First-Ever Photo of Quantum Entanglement – ScienceAlert

This stunning image captured last year by physicists at the University of Glasgow in Scotland is the first-ever photo of quantum entanglement - a phenomenon so strange, physicist Albert Einstein famously described it as 'spooky action at a distance'.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image was the first time we'd seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Quantum entanglement occurs when two particles become inextricably linked, and whatever happens to one immediately affects the other, regardless of how far apart they are. Hence the 'spooky action at a distance' description.

This particular photo shows entanglement between two photons - two light particles. They're interacting and - for a brief moment - sharing physical states.

Paul-Antoine Moreau, first author of the paper wherein the image was unveiled back in July 2019, told the BBC the image was "an elegant demonstration of a fundamental property of nature".

To capture the incredible photo, Moreau and a team of physicists created a system that blasted out streams of entangled photons at what they described as 'non-conventional objects'.

The experiment actually involved capturing four images of the photons under four different phase transitions. You can see the full image below:

(Moreau et al., Science Advances, 2019)

What you're looking at here is actually a composite of multiple images of the photons as they go through a series of four phase transitions.

The physicists split the entangled photons up and ran one beam through a liquid crystal material known as -barium borate, triggering four phase transitions.

At the same time they captured photos of the entangled pair going through the same phase transitions, even though it hadn't passed through the liquid crystal.

You can see the setup below: The entangled beam of photons comes from the bottom left, one half of the entangled pair splits to the left and passes through the four phase filters. The others that go straight ahead didn't go through the filters, but underwent the same phase changes.

(Moreau et al., Science Advances, 2019)

The camera was able to capture images of these at the same time, showing that they'd both shifted the same way despite being split. In other words, they were entangled.

While Einstein made quantum entanglement famous, the late physicist John Stewart Bell helped define quantum entanglement and established a test known as 'Bell inequality'. Basically, if you can break Bell inequality, you can confirm true quantum entanglement.

"Here, we report an experiment demonstrating the violation of a Bell inequality within observed images," the team wrote in Science Advances.

"This result both opens the way to new quantum imaging schemes ... and suggests promise for quantum information schemes based on spatial variables."

The research was published in Science Advances.

A version of this article was first published in July 2019.

See the rest here:
Looking Back on The First-Ever Photo of Quantum Entanglement - ScienceAlert

Ripple CTO: Quantum computers will be a threat to Bitcoin and XRP – Crypto News Flash

In a chapter of the Modern CTO podcast, Ripples CTO, David Schwartz, expressed concerns about the development of quantum computers. Ripples CTO believes this technology is a threat to the security of Bitcoin, XRP, and cryptocurrencies. This is primarily because the consensus algorithms behind cryptocurrencies rely on conventional cryptography, as Schwartz stated:

From the point of view of someone who is building systems based on conventional cryptography, quantum computing is a risk. We are not solving problems that need powerful computing like payments and liquidity the work that the computers do is not that incredibly complicated, but because it relies on conventional cryptography, very fast computers present a risk to the security model that we use inside the ledger.

Algorithms like SHA-2 and ECDSA (elliptic curve cryptography) are sort of esoteric things deep in the plumbing but if they were to fail, the whole system would collapse. The systems ability to say who owns Bitcoin or who owns XRP or whether or not a particular transaction is authorized would be compromised().

Ripples CTO said that Ripple is trying to prepare for the emergence of quantum computers. Therefore, they are determining when the algorithms mentioned will no longer be reliable. Ripples CTO estimates that in the next 8-10 years, quantum computers will begin to pose a threat, as Schwartz further stated:

I think we have at least eight years. I have very high confidence that its at least a decade before quantum computing presents a threat, but you never know when there could be a breakthrough. Im a cautious and concerned observer, I would say.

The other fear would be if some bad actor, some foreign government, secretly had quantum computing way ahead of whats known to the public. Depending on your threat model, you could also say what if the NSA has quantum computing. Are you worried about the NSA breaking your payment system?

Despite the above, Ripples CTO made an optimistic conclusion and stated that even if there is a malicious actor with this technology, he will not use it against the average person. Therefore, Schwartz believes that most users have nothing to worry about:

While some people might really be concerned it depends on your threat model, if youre just an average person or an average company, youre probably not going to be a victim of this lets say hypothetically some bad actor had quantum computing that was powerful enough to break things, theyre probably not going to go after you unless you are a target of that type of actor.

As soon as its clear that theres a problem, these systems will probably be frozen until they can be fixed or improved. So, most people dont have to worry about it.

Go here to see the original:
Ripple CTO: Quantum computers will be a threat to Bitcoin and XRP - Crypto News Flash

Now More Than Ever We Should Take Advantage of the Transformational Benefits of AI and ML in Healthcare – Managed Healthcare Executive

As healthcare businesses transform for a post-COVID-19 era, they are embracing digital technologies as essential for outmaneuvering the uncertainty faced by businesses and as building blocks for driving more innovation. Maturing digital technologies such as social, mobile, analytics and cloud (SMAC); emerging technologies such as distributed ledger, artificial intelligence, extended reality and quantum computing (DARQ);and scientific advancements (e.g., CRISPR, materials science) are helping to make innovative breakthroughs a reality.

These technologies are also proving essential in supporting COVID-19 triage efforts. For example, hospitals in China are using artificial intelligence (AI) to scan lungs, which is reducing the burden on healthcare providers and enabling earlier intervention. Hospitals in the United States are also using AI to intercept individuals with COVID-19 symptoms from visiting patients in the hospital.

Because AI and machine learning (ML) definitions can often be confused, it may be best to start by defining our terms.

AI can be defined as a collection of different technologies that can be brought together to enable machines to act with what appears to be human-like levels of intelligence. AI provides the ability for technology to sense, comprehend, act and learn in a way that mimics human intelligence.

ML can be viewed as a subset of AI that provides software, machines and robots the ability to learn without static program instructions.

ML is currently being used across the health industry to generate personalized product recommendations to consumers, identify the root cause of quality problems and fix them, detect healthcare claims fraud, and discover and recommend treatment options to physicians. ML-enabled processes rely on software, systems, robots or other machines which use ML algorithms.

For the healthcare industry, AI and ML represent a set of inter-related technologiesthat allow machines to perform and help with both administrative and clinical healthcare functions. Unlike legacy technologies that are algorithm-based tools that complement a human, health-focused AI and ML today can truly augment human activity.

The full potential of AI is moving beyond mere automation of simple tasks into a powerful tool enabling collaboration between humans and machines. AI is presenting an opportunity to revolutionize healthcare jobs for the better.

Recent research indicates that in order to maximize the potential of AI and to be digital leaders, healthcare organizations must re-imagine and re-invent their processes and create self-adapting, self-optimizing living processes that use ML algorithms and real-time data to continuously improve.

In fact, theres consensus among healthcare organizations hat ML-enabled processes help achieve previously hidden or unobtainable value, and that these processes are finding solutions to previously unsolved business problems.

Despite these key findings, additional research surprisingly finds that only 39% of healthcare organizations report that they have inclusive design or human-centric design principles in place to support human-machine collaboration. Machines themselves will become agents of process change, unlocking new roles and new ways for humans and machines to work together.

In order to tap into the unique strengths of AI, healthcare businesses will need to rely on their peoples talent and ability to steward, direct, and refine the technology. Advances in natural language processing and computer vision can help machines and people collaborate and understand one another and their surroundings more effectively. It will be vital to prioritize explainability to help organizations ensure that people understand AI.

Powerful AI capabilities are already delivering profound results across other industries such as retail and automotive. Healthcare organizations now have an opportunity to integrate the new skills needed to enable fluid interactions between human and machines and adapt to the workforce models needed to support these new forms of collaboration.

By embracing the growing adoption of AI, healthcare organizations will soon see the potential benefits and value of AI such as organizational and workflow improvements that can unleash improvements in cost, quality and access. Growth in the AI health market is expected to reach $6.6 billion by 2021 thats a compound annual growth rate of 40%. In just the next couple of years,the health AI market will grow more than 10 times.

AI generally, and ML specifically, gives us technology that can finally perform specialized nonroutine tasks as it learns for itself without explicit human programing shifting nonclinical judgment tasks away from healthcare enterprise workers.

What will be key to the success of healthcare organizations leveraging AI and ML across every process, piece of data and worker? When AI and ML are effectively added to the operational picture, we will see healthcare systems where machines will take on simple, repetitive tasks so that humans can collaborate on a larger scale and work at a higher cognitive level. AI and ML can foster a powerful combination of strategy, technology and the future of work that will improve both labor productivity and patient care.

Brian Kalis is a managing director of digital health and innovation for Accenture's health business.

More:
Now More Than Ever We Should Take Advantage of the Transformational Benefits of AI and ML in Healthcare - Managed Healthcare Executive

Cybersecurity in the quantum era – ETCIO.com

By Tirthankar Dutta

On October 23rd, 2019, Google claimed that they had achieved Quantum supremacy by solving a particularly difficult problem in 200 seconds by using their quantum computer, which is also known as "sycamore." This performance was compared with a Supercomputer known as 'Summit" and built by IBM. According to Google, this classical computer would have taken 10,000 years to solve the same problem.

The advancement of large quantum computers, along with the more computational power it will bring, could have dire consequences for cybersecurity. It is well known that important problems such as factoring, whose considered hardness ensures the security of many widely used protocols (RSA, DSA, ECDSA), can be solved efficiently, if a quantum computer that is sufficiently large, "fault-tolerant" and universal, is developed. However, addressing the imminent risk that adversaries equipped with quantum technologies pose is not the only issue in cybersecurity where quantum technologies are bound to play a role.

Because quantum computing speeds up prime number factorization, computers enabled with that technology can easily break cryptographic keys by quickly calculating or exhaustively searching secret keys. A task considered computationally infeasible by a conventional computer becomes painfully easy, compromising existing cryptographic algorithms used across the board. In the future, even robust cryptographic algorithms will be substantially weakened by quantum computing, while others will no longer be secure at all:

There would be many disconnects on the necessity to change the current cryptographic protocols and infrastructure to counter quantum technologies in a negative way, but we can't deny the fact that future adversaries might use this kind of technology to their benefit. As it allows them to work on millions of computations in parallel, exponentially speeding up the time it takes to process a task.

According to the National, Academies Study notes, "the current quantum computers have very little processing power and are too error-prone to crack today's strong codes. The future code-breaking quantum computers would need 100,000 times more processing power and an error rate 100 times better than today's best quantum computers have achieved. The study does not predict how long these advances might takebut it did not expect them to happen within a decade."

But does this mean that we should wait and watch the evolution of quantum computing, or should we go back to our drawing board to create quantum-resistant cryptography? Thankfully, researchers have been working on a public-key cryptography algorithm that can counter code-breaking efforts by quantum computers. US National Institute of Standards and Technology (NIST) evaluating 69 potential new methods for what it calls "post-quantum cryptography." The institution expects to have a draft standard by 2024, which would then be added to web browsers and other internet applications and systems

No matter when dominant quantum computing arrives, it poses a large security threat. Because the process of adopting new standards can take years, it is wise to begin planning for quantum-resistant cryptography now.

The author is SVP and Head of Information Security at Infoedge.

DISCLAIMER: The views expressed are solely of the author and ETCIO.com does not necessarily subscribe to it. ETCIO.com shall not be responsible for any damage caused to any person/organisation directly or indirectly.

See the article here:
Cybersecurity in the quantum era - ETCIO.com

Solving problems by working together: Could quantum computing hold the key to Covid-19? – ITProPortal

Given the enormous potential for quantum computing to change the way we forecast, model and understand the world, many are beginning to question whether it could have helped to better prepare us all for a global pandemic such as the Covid-19 crisis. Governments, organisations and the public are continuing the quest for answers about when this crisis will end and how we can find a way out of the current state of lockdown, and we are all continuing to learn through incremental and experimental steps. It certainly seems plausible that the high compute simulation capabilities of our most revolutionary technology could hold some of the answers and enable us to respond in a more coherent and impactful way.

Big investments have already been made in quantum computing, as countries and companies battle to create the first quantum supercomputer, so they can harness the power of this awesome technology. The World Economic Forum has also recognised the important role that this technology will play in our future, and has a dedicated Global Future Council to drive collaboration between public and private sector organisations engaged in the development of Quantum Computing. Although its unlikely to result in any overnight miracles, its understandable that many are thinking about whether these huge efforts and investments can be turned towards the mutual challenge we face in finding a solution to the Covid-19 pandemic.

There are already some ground-breaking use-cases for quantum computing within the healthcare industry. Where in the past some scientific breakthroughs such as the discovery of penicillin came completely by accident, quantum computing puts scientists in a much stronger position to find what they were looking for, faster. Quantum raises capacity to such a high degree that it would be possible to model penicillin using just a third of the processing power a classical computer would require to do the job meaning it can do more with less, at greater speed.

In the battle against Covid-19, the US Department of Energys Oak Ridge National Laboratory (ORNL) is already using quantum supercomputers in its search for drug compounds that can treat the disease. IBM has also been using quantum supercomputers to run simulations on thousands of compounds to try and identify which of them is most likely to attach to the spike that Covid-19 uses to inject genetic material into healthy cells, and thereby prevent it. It has already emerged with 77 promising drugs that are worth further investigation and development progress that would have taken years if traditional computing power had been used.

Other businesses are likely to be keen to follow in the footsteps of these examples, and play their own part in dealing with the crisis, but to date its only been the worlds largest organisations that have been using quantum power. At present, many businesses simply dont have the skills and resources needed to fabricate, verify, architect and launch a large-scale quantum computer on their own.

It will be easier to overcome these barriers, and enable more organisations to start getting to work with quantum computing, if they open themselves up to collaboration with partners, rather than trying to go it alone. Instead of locking away their secrets, businesses must be willing to work within an open ecosystem; finding mutually beneficial partnerships will make it much more realistic to drive things forward.

The tech giants have made a lot of early progress with quantum, and partnering with them could prove extremely valuable. Google, for example, claims to have developed a machine that can solve a problem in 200 seconds that would take the worlds fastest supercomputer 10,000 years imagine adding that kind of firepower to your computing arsenal. Google, IBM and Microsoft have already got the ball rolling by creating their own quantum partner networks. IBM Q and Microsoft Quantum Network bring together start-ups, universities, research labs, and Fortune 500 companies, enabling them to enjoy the benefits of exploring and learning together. The Google AI quantum initiative brings together strong academia support along with start-up collaboration on open source frameworks and tools in their lab. Collaborating in this manner, businesses can potentially play their own part in solving the Covid-19 crisis, or preventing future pandemics from doing as much damage.

Those that are leading the way in quantum computing are taking a collaborative approach, acknowledging that no one organisation holds all the answers or all the best ideas. This approach will prove particularly beneficial as we search for a solution to the Covid-19 crisis: its in everyones interests to find an exit to the global shutdown and build knowledge that means we are better-prepared for future outbreaks.

Looking at the bigger picture, despite all the progress that is being made with quantum, traditional computing will still have an important role to play in the short to medium term. Strategically, it makes sense to have quantum as the exploratory left side of the brain, while traditional systems remain in place for key business-as-usual functions. If they can think about quantum-related work in this manner, businesses should begin to feel more comfortable making discoveries and breakthroughs together. This will allow them to speed up the time to market so that ideas can be explored, and new ground broken, much faster than ever before and thats exactly what the world needs right now.

Kalyan Kumar, CVP & CTO, IT Services, HCL Technologies

Follow this link:
Solving problems by working together: Could quantum computing hold the key to Covid-19? - ITProPortal