Quantum computing research helps IBM win top spot in patent race – CNET
An IBM patent shows a hexagonal array of qubits in a quantum computer, arranged to minimize problems controlling the finicky data processing elements.
IBM secured 9,130 US patents in 2020, more than any other company as measured by an annual ranking, and this year quantum computing showed up as part of Big Blue's research effort. The company wouldn't disclose how many of the patents were related to quantum computing -- certainly fewer than the 2,300 it received for artificial intelligence work and 3,000 for cloud computing -- but it's clear the company sees them as key to the future of computing.
The IFI Claims patent monitoring service compiles the list annually, and IBM is a fixture at the top. The IBM Research division, with labs around the globe, has for decades invested in projects that are far away from commercialization. Even though the work doesn't always pay dividends, it's produced Nobel prizes and led to entire industries like hard drives, computer memory and database software.
Get the latest tech stories with CNET Daily News every weekday.
"A lot of the work we do in R&D really is not just about the number of patents, but a way of thinking," Jerry Chow, director of quantum hardware system development, said in an exclusive interview. "New ideas come out of it."
IFI's US patent list is dominated by computer technology companies. Second place went to Samsung with 6,415 patents, followed by Canon with 3,225, Microsoft with 2,905 and Intel with 2,867. Next on the list are Taiwan Semiconductor Manufacturing Corp., LG, Apple, Huawei and Qualcomm. The first non-computing company is Toyota, in 14th place.
Internationally, IBM ranked second to Samsung in patents for 2020, and industrial companies Bosch and General Electric cracked the top 10. Many patents are duplicative internationally since it's possible to file for a single patent in 153 countries.
Quantum computing holds the potential to tackle computing problems out of reach of conventional computers. During a time when it's getting harder to improve ordinary microprocessors, quantum computers could pioneer new high-tech materials for solar panels and batteries, improve chemical processes, speed up package delivery, make factories more efficient and lower financial risks for investors.
Industrywide, quantum computing is a top research priority, with dozens of companies investing millions of dollars even though most don't expect a payoff for years. The US government is bolstering that effort with a massive multilab research effort. It's even become a headline event at this year's CES, a conference that more typically focuses on new TVs, laptops and other consumer products.
"Tactical and strategic funding is critical" to quantum computing's success, said Hyperion Research analyst Bob Sorensen. That's because, unlike more mature technologies, there's not yet any virtuous cycle where profits from today's quantum computing products and services fund the development of tomorrow's more capable successors.
IBM has taken a strong early position in quantum computing, but it's too early to pick winners in the market, Sorensen added.
The long-term goal is what's called a fault tolerant quantum computer, one that uses error correction to keep calculations humming even when individual qubits, the data processing element at the heart of quantum computers, are perturbed. In the nearer term, some customers like financial services giant JPMorgan Chase, carmaker Daimler and aerospace company Airbus are investing in quantum computing work today with the hope that it'll pay off later.
Quantum computing is complicated to say the least, but a few patents illustrate what's going on in IBM's labs.
Patent No. 10,622,536 governs different lattices in which IBM lays out its qubits. Today's 27-qubit "Falcon" quantum computers use this approach, as do the newer 65-qubit "Hummingbird" machines and the much more powerful 1,121-qubit "Condor" systems due in 2023.
A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.
IBM's lattices are designed to minimize "crosstalk," in which a control signal for one qubit ends up influencing others, too. That's key to IBM's ability to manufacture working quantum processors and will become more important as qubit counts increase, letting quantum computers tackle harder problems and incorporate error correction, Chow said.
Patent No. 10,810,665 governs a higher-level quantum computing application for assessing risk -- a key part of financial services companies figuring out how to invest money. The more complex the options being judged, the slower the computation, but the IBM approach still outpaces classical computers.
Patent No. 10,599,989 describes a way of speeding up some molecular simulations, a key potential promise of quantum computers, by finding symmetries in molecules that can reduce computational complexity.
Most customers will tap into the new technology throughquantum computing as a service. Because quantum computers typically must be supercooled to within a hair's breadth of absolute zero to avoid perturbing the qubits, and require spools of complicated wiring, most quantum computing customers are likely to tap into online services from companies like IBM, Google, Amazon and Microsoft that offer access to their own carefully managed machines.
See the original post:
Quantum computing research helps IBM win top spot in patent race - CNET