Archive for the ‘Quantum Computing’ Category

With $55M third fund, Scout Ventures is funding veterans ready to tackle the hardest technical challenges – TechCrunch

When it comes to people pushing the frontiers of science, few institutions can match the talent of the Department of Defense, the intelligence agencies and the U.S. national laboratory system. With ample budgets and flexible oversight under that aura of national security, ambitious scientists and engineers are working on everything from quantum computing to next-generation satellites.

That wealth of talent is often left behind in the frenetic product development and fundraising world of Silicon Valley. Langley, Arlington and Los Alamos are a far cry from Palo Alto or New York City. Even more challenging is the career transition: the government is, well, the government, and the private sector is, well, the private sector. Moving from one to the next can be quite jarring.

Scout Ventures wants to act as the bridge between the startup world and that vast science and technology workforce, with a particular focus on veterans of the military, intelligence agencies and national labs. Founded about a decade ago in 2012 by Brad Harrison, the firm raised two funds and invested in several dozen companies at the earliest stages, including identity verification platform ID.me (now valued at $1.5 billion), mens subscription service Bespoke Post and youth sports management platform LeagueApps. It also incubated companies like health services company Unite Us.

The firm announced this morning that is has raised a $55 million third fund, which will continue its focus on backing veterans while centering its investment thesis on frontier tech in areas like machine learning, robotics, drones, physical security, quantum computing and space (that said, the firm does not invest in weapons).

Harrison, who has been a long-time angel investor prior to forming Scout Ventures and is a West Point grad and Army Airborne Ranger, said that when he started to look at the track records of the most successful founders he backed, many of them happened to be veterans. So he started doubling down on that thesis, eventually hiring Wes Blackwell who graduated from the Naval Academy and Sam Ellis in Brooklyn from West Point as his co-partners.

Scout Ventures partners Wes Blackwell, Brad Harrison and Sam Ellis. Image Credits: Scout Ventures.

Scout is a traditional seed stage fund, and Harrison said that the firm targets roughly a deal per month, with a typical check between $500,000 and $1 million targeting 10% ownership. The firm also reserves $2-3 million in capital for follow-on investments.

One of the firms unique differentiators is taking advantage of ample non-dilutive funding from government programs and locking that in for its portfolio companies. Harrison said that the firm typically can secure three dollars of such funds for each dollar it invests, allowing its portfolio companies to grow faster for longer and with less dilution. Were seeing the most active money flowing through Air Force number one, Army number two, and then you are seeing some money flowing through the Department of Energy and the National Science Foundation, Harrison said.

In terms of companies, the target is so-called dual-use startups that have applications that can be used by both the public and private sectors. These are core, disruptive technologies that we believe are going to bring a shift change, so they inherently have applications to the DoD and the commercial sector, he said. They are hard to find, and that is why we talk to so many companies.

As examples of startups within this thesis, Harrison pointed to four companies in quantum computing and others in electronic warfare, where applications can be as important to the NSA as to telecoms like Verizon and T-Mobile. He also pointed out companies like De-Ice, which is using electromagnetic technology to make deicing of planes and other equipment faster and safer. Such technology could improve operations for the Air Force as well as civilian carriers.

Ultimately, Scout hopes that its unique network and focus will allow it to access these hard-to-reach founders who are really distrustful of most VCs, Harrison said. That makes us competitive.

Among the LPs of the new fund are the New Mexico State Investment Council (home of the Los Alamos National Laboratory), former Citigroup chairman Richard Parsons, Auctus Investment Group, restaurateur and brewer David Kassling, and Michael Loeb.

The rest is here:
With $55M third fund, Scout Ventures is funding veterans ready to tackle the hardest technical challenges - TechCrunch

Quantum computing startup Quantum Machines raises $50M – VentureBeat

The Transform Technology Summits start October 13th with Low-Code/No Code: Enabling Enterprise Agility. Register now!

Quantum Machines, a company thats setting out to bring about useful quantum computers, has raised $50 million in a series B round of funding as it looks to fund expansion into quantum cloud computing.

Founded out of Tel Aviv in 2018, Quantum Machines last year formally launched its Quantum Orchestration Platform, pitched as an extensive hardware and software platform for performing the most complex quantum algorithms and experiments and taking quantum computing to the next level by making it more practical and accessible.

Based on principles from quantum mechanics, quantum computing is concerned with quantum bits (qubits) rather than atoms. While still in its relative infancy, quantum computing promises to revolutionize computation by performing in seconds complex calculations that would take the supercomputers of today years or longer. The societal and business implications of this are huge and could expedite new drug discoveries or enhance global logistics in the shipping industry to optimize routes and reduce carbon footprints.

Quantum Machines is focused on developing a new approach to controlling and operating quantum processors.

Quantum processors hold the potential for immense computational power, far beyond those of any classical processor we could ever develop, and they will impact each and every aspect of our lives, Quantum Machines CEO Dr. Itamar Sivan said in a press release.

Venture capital (VC) investments in quantum computing have been relatively modest, but Ionq became the first such company to go public via a SPAC merger in March. And a few months back, PsiQuantum closed a $450 million round of funding to develop the first commercially viable quantum computer, with big-name backers that included BlackRock and Microsofts M12 venture fund. Microsoft also launched its Azure Quantum cloud computing service, which it first announced back in 2019, in public preview.

So quantum computing appears to be gaining momentum, as evidenced by Quantum Machines latest raise. The company had previously raised $23 million, including a $17.5 million series A from last year, and its series B round was led by Red Dot Capital Partners, with the participation from Samsung Next, Battery Ventures, Valor Equity Partners, Exor, Claridge Israel, Atreides Management LP, TLV Partners, and 2i Ventures, among others.

The company said it plans to use its fresh capital to help implement an effective cloud infrastructure for quantum computers.

Originally posted here:
Quantum computing startup Quantum Machines raises $50M - VentureBeat

Quantum Computing Breakthrough: Entanglement of Three Spin Qubits Achieved in Silicon – SciTechDaily

Figure 1: False-colored scanning electron micrograph of the device. The purple and green structures represent the aluminum gates. Six RIKEN physicists succeeded in entangling three silicon-based spin qubits using the device. Credit: 2021 RIKEN Center for Emergent Matter Science

A three-qubit entangled state has been realized in a fully controllable array of spin qubits in silicon.

An all-RIKEN team has increased the number of silicon-based spin qubits that can be entangled from two to three, highlighting the potential of spin qubits for realizing multi-qubit quantum algorithms.

Quantum computers have the potential to leave conventional computers in the dust when performing certain types of calculations. They are based on quantum bits, or qubits, the quantum equivalent of the bits that conventional computers use.

Although less mature than some other qubit technologies, tiny blobs of silicon known as silicon quantum dots have several properties that make them highly attractive for realizing qubits. These include long coherence times, high-fidelity electrical control, high-temperature operation, and great potential for scalability. However, to usefully connect several silicon-based spin qubits, it is crucial to be able to entangle more than two qubits, an achievement that had evaded physicists until now.

Seigo Tarucha (second from right) and his co-workers have realized a three-qubit entangled state in a fully controllable array of spin qubits in silicon. Credit: 2021 RIKEN

Seigo Tarucha and five colleagues, all at the RIKEN Center for Emergent Matter Science, have now initialized and measured a three-qubit array in silicon with high fidelity (the probability that a qubit is in the expected state). They also combined the three entangled qubits in a single device.

This demonstration is a first step toward extending the capabilities of quantum systems based on spin qubits. Two-qubit operation is good enough to perform fundamental logical calculations, explains Tarucha. But a three-qubit system is the minimum unit for scaling up and implementing error correction.

The teams device consisted of a triple quantum dot on a silicon/silicongermanium heterostructure and is controlled through aluminum gates. Each quantum dot can host one electron, whose spin-up and spin-down states encode a qubit. An on-chip magnet generates a magnetic-field gradient that separates the resonance frequencies of the three qubits, so that they can be individually addressed.

The researchers first entangled two of the qubits by implementing a two-qubit gatea small quantum circuit that constitutes the building block of quantum-computing devices. They then realized three-qubit entanglement by combining the third qubit and the gate. The resulting three-qubit state had a remarkably high state fidelity of 88%, and was in an entangled state that could be used for error correction.

This demonstration is just the beginning of an ambitious course of research leading to a large-scale quantum computer. We plan to demonstrate primitive error correction using the three-qubit device and to fabricate devices with ten or more qubits, says Tarucha. We then plan to develop 50 to 100 qubits and implement more sophisticated error-correction protocols, paving the way to a large-scale quantum computer within a decade.

Reference: Quantum tomography of an entangled three-qubit state in silicon by Kenta Takeda, Akito Noiri, Takashi Nakajima, Jun Yoneda, Takashi Kobayashi and Seigo Tarucha, 7 June 2021, Nature Nanotechnology.DOI: 10.1038/s41565-021-00925-0

Read the original:
Quantum Computing Breakthrough: Entanglement of Three Spin Qubits Achieved in Silicon - SciTechDaily

Quantum computing breakthrough achieved, road to the future begins now – TweakTown

A team of researchers has achieved what is being described as a "breakthrough" in quantum computing.

VIEW GALLERY - 2 IMAGES

The achievement comes from a team of researchers at the RIKEN Center for Emergent Matter Science, who have been able to entangle a three-qubit array in silicon with high accuracy of predicting the state the qubit is in. For those that don't know, instead of using bits to make calculations and perform tasks like a typical computer does, quantum computers use quantum bits, or qubits.

The device the researchers created used three very small blobs of silicon called quantum dots, and each of these dots can hold one electron. The direction of the spin of the electron encodes the qubit. With that in mind, it should be noted that a "Two-qubit operation is good enough to perform fundamental logical calculations. But a three-qubit system is the minimum unit for scaling up and implementing error correction", explains Tarucha.

False-colored scanning electron micrograph of the device. The purple and green structures represent the aluminum gates, per scitechdaily.com.

After successfully entangling two qubits, the team of researchers introduced the third qubit and was able to predict its state with a high fidelity of 88%. Tarucha added, "We plan to demonstrate primitive error correction using the three-qubit device and to fabricate devices with ten or more qubits. We then plan to develop 50 to 100 qubits and implement more sophisticated error-correction protocols, paving the way to a large-scale quantum computer within a decade."

For more information on this story, check out this link here.

Read the original post:
Quantum computing breakthrough achieved, road to the future begins now - TweakTown

Large-Scale Simulations Of The Brain May Need To Wait For Quantum Computers – Forbes

Will quantum computer simulations crack open our understanding of the biological brain?

Looking back at the history of computers, its hard to overestimate the rate at which computing power has scaled in the course of just a single human lifetime. But yet, existing classical computers have fundamental limits. If quantum computers are successfully built and eventually fully come online, they will be able to tackle certain classes of problems that elude classical computers. And they may be the computational tool needed to fully understand and simulate the brain.

As of this writing, the fastest supercomputer in the world is Japans Fugaku supercomputer, developed jointly by Riken and Fujitsu. It can perform 442 peta-floating-point operations per second.

Lets break that number down in order to arrive at an intuitive (as much as possible) grasp of what it means.

A floating-point number is a way to express, or write down, a real number - real in a mathematical sense - with a fixed amount of precision. Real numbers are all the continuous numbers from the number line. 5, -23, 7/8, and numbers like pi (3.1415926 ...) that go on forever are all real numbers. The problem is a computer, which is digital, has a hard time internally representing continuous numbers. So one way around this is to specify a limited number of digits, and then specify how big or small the actual number is by some base power. For example, the number 234 can be written as 2.34 x 102, because 2.34 x 100 equals 234. Floating point numbers specify a fixed number of significant digits the computer must store in its memory. It fixes the accuracy of the number. This is important because if you do any mathematical operation (e.g. addition, subtraction, division or multiplication) with the fixed accuracy version of a real number, small errors in your results will be generated that propagate (and can grow) throughout other calculations. But as long as the errors remain small its okay.

A floating point operation then, is any arithmetic operation between two floating-point numbers (abbreviated as FLOP). Computer scientists and engineers use the number of FLOP per second - or FLOPS - as a benchmark to compare the speed and computing power of different computers.

One petaFLOP is equivalent to 1,000,000,000,000,000 - or one quadrillion - mathematical operations. A supercomputer with a computing speed of one petaFLOPS is therefore performing one quadrillion operations per second! The Fugaku supercomputer is 442 times faster than that.

For many types of important scientific and technological problems however, even the fastest supercomputer isnt fast enough. In fact, they never will be. This is because for certain classes of problems, the number of possible combinations of solutions that need to be checked grow so fast, compared to the number of things that need to be ordered, that it becomes essentially impossible to compute and check them all.

Heres a version of a classic example. Say you have a group of people with differing political views, and you want to seat them around a table in order to maximize constructive dialogue while minimizing potential conflict. The rules you decide to use dont matter here, just that some set of rules exist. For example, maybe you always want to seat a moderate between a conservative and a liberal in order to act as a bit of a buffer.

This is what scientists and engineers call an optimization problem. How many possible combinations of seating arrangements are there? Well, if you only have two people, there are only two possible arrangements. One individual on each side of a table, and then the reverse, where the two individuals change seats. But if you have five people, the number of possible combinations jumps to 120. Ten people? Well, now youre looking at 3,628,800 different combinations. And thats just for ten people, or more generally, any ten objects. If you had 100 objects, the number of combinations is so huge that its a number with 158 digits (roughly, 9 x 10157). By comparison, there are only about 1021 stars in the observable universe.

Imagine now if you were trying to do a biophysics simulation of a protein in order to develop a new drug that had millions or billions of individual molecules interacting with each other. The number of possible combinations that would need to be computed and checked far exceed the capability of any computer that exists today. Because of how theyre designed, even the fastest supercomputer is forced to check each combination sequentially - one after another. No matter how fast a classical computer is or can be, given the literally greater than astronomical sizes of the number of combinations, many of these problems would take a practical infinity to solve. It just becomes impossible.

Related, the other problem classical computers face is its impossible to build one with sufficient memory to store each of the combinations, even if all the combinations could be computed.

The details of how a quantum computer and quantum computing algorithms work is well beyond the scope or intent of this article, but we can briefly introduce one of the key ideas in order to understand how they can overcome the combinatorial limitations of classical computers.

Classical computers represent information - all information - as numbers. And all numbers can be represented as absolute binary combinations of 1s and 0s. The 1 and 0 each represent a bit of information, the fundamental unit of classical information. Or put another way, information is represented by combinations of two possible states. For example, the number 24 in binary notation is 11000. The number 13 is 1101. You can also do all arithmetic in binary as well. This is convenient, because physically, at the very heart of classical computers is the transistor, which is just an on-off electrical switch. When its on it encodes a 1, and when its off it encodes a 0. Computers do all their math by combining billions of tiny transistors that very quickly switch back and forth as needed. Yet, as fast as this can occur, it still takes finite amounts of time, and all calculations need to be done in an appropriate ordered sequence. If the number of necessary calculations become big enough, as is the case with the combinatorial problems discussed above, you run into an unfeasible computational wall.

Quantum computers are fundamentally different. They overcome the classical limitations by being able to represent information internally not just as a function of two discrete states, but as a continuous probabilistic mixing of states. This allows quantum bits, or qubits, to have many more possible states they can represent at once, and so many more possible combinations of arrangements of objects at once. Put another way, the state space and computational space that a quantum computer has access too is much larger than that of a classical computer. And because of the wave nature of quantum mechanics and superposition (concepts we will not explore here), the internal mixing and probabilistic representation of states and information eventually converge to one dominant solution that the computer outputs. You cant actually observe that internal mixing, but you can observe the final computed output. In essence, as the number of qubits in the quantum computer increase, you can exponentially do more calculations in parallel.

The key concept here is not that quantum computers will necessarily be able to solve new and exotic classes of problems that classical computers cant - although computer scientists have discovered a theoretical class of problem that only quantum computers can solve - but rather that they will be able to solve classes of problems that are - and always will be - beyond the reach of classical computers.

And this isnt to say that quantum computers will replace classical computers. That is not likely to happen anytime in the foreseeable future. For most classes of computational problems classical computers will still work just fine and probably continue being the tool of choice. But for certain classes of problems, quantum computers will far exceed anything possible today.

Well, it depends on the scale at which the dynamics of the brain is being simulated. For sure, there has been much work within the field of computational neuroscience over many decades successfully carrying out computer simulations of the brain and brain activity. But its important to understand the scale at which any given simulation is done.

The brain is exceedingly structurally and functionally hierarchical - from genes, to molecules, cells, network of cells and networks of brain regions. Any simulation of the brain needs to begin with an appropriate mathematical model, a set of equations that capture the chosen scale being modeled that then specify a set of rules to simulate on a computer. Its like a map of a city. The mapmaker needs to make a decision about the scale of the map - how much detail to include and how much to ignore. Why? Because the structural and computational complexity of the brain is so vast and huge that its impossible given existing classical computers to carry out simulations that cut across the many scales with any significant amount of detail.

Even though a wide range of mathematical models about the molecular and cell biology and physiology exist across this huge structural and computational landscape, it is impossible to simulate with any accuracy because of the sheer size of the combinatorial space this landscape presents. It is the same class of problem as that of optimizing people with different political views around a table. But on a much larger scale.

Once again, it in part depends on how you choose to look at it. There is an exquisite amount of detail and structure to the brain across many scales of organization. Heres a more in depth article on this topic.

But if you just consider the number of cells that make up the brain and the number of connections between them as a proxy for the computational complexity - the combinatorial space - of the brain, then it is staggeringly large. In fact, it defies any intuitive grasp.

The brain is a massive network of densely interconnected cells consisting of about 171 trillion brain cells - 86 billion neurons, the main class of brain cell involved in information processing, and another 85 billion non-neuronal cells. There are approximately 10 quadrillion connections between neurons that is a 1 followed by 16 zeros. And of the 85 billion other non-neuronal cells in the brain, one major type of cell called astrocyte glial cells have the ability to both listen in and modulate neuronal signaling and information processing. Astrocytes form a massive network onto themselves, while also cross-talking with the network of neurons. So the brain actually has two distinct networks of cells. Each carrying out different physiological and communication functions, but at the same time overlapping and interacting with each other.

The computational size of the human brain in numbers.

On top of all that structure, there are billions upon billions upon billions of discrete electrical impulses, called action potentials, that act as messages between connected neurons. Astrocytes, unlike neurons, dont use electrical signals. They rely on a different form of biochemical signaling to communicate with each other and with neurons. So there is an entire other molecularly-based information signaling mechanism at play in the brain.

Somehow, in ways neuroscientists still do not fully understand, the interactions of all these electrical and chemical signals carry out all the computations that produce everything the brain is capable of.

Now pause for a moment, and think about the uncountable number of dynamic and ever changing combinations that the state of the brain can take on given this incredible complexity. Yet, it is this combinatorial space, the computations produced by trillions of signals and billions of cells in a hierarchy of networks, that result in everything your brain is capable of doing, learning, experiencing, and perceiving.

So any computer simulation of the brain is ultimately going to be very limited. At least on a classical computer.

How big and complete are the biggest simulations of the brain done to date? And how much impact have they had on scientists understanding of the brain? The answer critically depends on whats being simulated. In other words, at what scale - or scales - and with how much detail given the myriad of combinatorial processes. There certainly continue to be impressive attempts from various research groups around the world, but the amount of cells and brain being simulated, the level of detail, and the amount of time being simulated remains rather limited. This is why headlines and claims that tout ground-breaking large scale simulations of the brain can be misleading, sometimes resulting in controversy and backlash.

The challenges of doing large multi-scale simulations of the brain are significant. So in the end, the answer to how big and complete are the biggest simulations of the brain done to date and how much impact have they had on scientists understanding of the brain - is not much.

First, by their very nature, given a sufficient number of qubits quantum computers will excel at solving and optimizing very large combinatorial problems. Its an inherent consequence of the physics of quantum mechanics and the design of the computers.

Second, given the sheer size and computational complexity of the human brain, any attempt at a large multi-scale simulation with sufficient detail will have to contend with the combinatorial space of the problem.

Third, how a potential quantum computer neural simulation is set up might be able to take advantage of the physics the brain is subject to. Despite its computational power, the brain is still a physical object, and so physical constraints could be used to design and guide simulation rules (quantum computing algorithms) that are inherently combinatorial and parallelizable, thereby taking advantage of what quantum computers do best.

For example, local rules, such as the computational rules of individual neurons, can be used to calculate aspects of the emergent dynamics of networks of neurons in a decentralized way. Each neuron is doing their own thing and contributing to the larger whole, in this case the functions of the whole brain itself, all acting at the same time, and without realizing what theyre contributing too.

In the end, the goal will be to understand the emergent functions of the brain that give rise to cognitive properties. For example, large scale quantum computer simulations might discover latent (hidden) properties and states that are only observable at the whole brain scale, but not computable without a sufficient level of detail and simulation from the scales below it.

If these simulations and research are successful, one can only speculate about what as of yet unknown brain algorithms remain to be discovered and understood. Its possible that such future discoveries will have a significant impact on related topics such as artificial quantum neural networks, or on specially designed hardware that some day may challenge the boundaries of existing computational systems. For example, just published yesterday, an international team of scientists and engineers announced a computational hardware device composed of a molecular-chemical network capable of energy-efficient rapid reconfigurable states, somewhat similar to the reconfigurable nature of biological neurons.

One final comment regarding quantum computers and the brain: This discussion has focused on the potential use of future quantum computers to carry out simulations of the brain that are not currently possible. While some authors and researchers have proposed that neurons themselves might be tiny quantum computers, that is completely different and unrelated to the material here.

It may be that quantum computers will usher in a new era for neuroscience and the understanding of the brain. It may even be the only real way forward. But as of now, actually building workable quantum computers with sufficient stable qubits that outperform classical computers at even modest tasks remains a work in progress. While a handful of commercial efforts exist and have claimed various degrees of success, many difficult hardware and technological challenges remain. Some experts argue that quantum computers may in the end never be built due to technical reasons. But there is much research across the world both in academic labs and in industry attempting to overcome these engineering challenges. Neuroscientists will just have to be patient a bit longer.

Continue reading here:
Large-Scale Simulations Of The Brain May Need To Wait For Quantum Computers - Forbes