Archive for the ‘Quantum Computing’ Category

Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering – HPCwire

LOS ALAMITOS, Calif.,May 14, 2020 Registration is now open for the inauguralIEEE International Conference on Quantum Computing and Engineering (QCE20), a multidisciplinary event focusing on quantum technology, research, development, and training. QCE20, also known as IEEE Quantum Week, will deliver a series ofworld-class keynotes,workforce-building tutorials,community-building workshops, andtechnical paper presentations and postersonOctober 12-16inDenver, Colorado.

Were thrilled to open registration for the inaugural IEEE Quantum Week, founded by the IEEE Future Directions Initiative and supported by multiple IEEE Societies and organizational units, said Hausi Mller, QCE20 general chair and co-chair of the IEEE Quantum Initiative.Our initial goal is to address the current landscape of quantum technologies, identify challenges and opportunities, and engage the quantum community. With our current Quantum Week program, were well on track to deliver a first-rate quantum computing and engineering event.

QCE20skeynote speakersinclude the following quantum groundbreakers and leaders:

The week-longQCE20 tutorials programfeatures 15 tutorials by leading experts aimed squarely at workforce development and training considerations. The tutorials are ideally suited to develop quantum champions for industry, academia, and government and to build expertise for emerging quantum ecosystems.

Throughout the week, 19QCE20 workshopsprovide forums for group discussions on topics in quantum research, practice, education, and applications. The exciting workshops provide unique opportunities to share and discuss quantum computing and engineering ideas, research agendas, roadmaps, and applications.

The deadline for submittingtechnical papersto the eight technical paper tracks isMay 22. Papers accepted by QCE20 will be submitted to the IEEE Xplore Digital Library. The best papers will be invited to the journalsIEEE Transactions on Quantum Engineering(TQE)andACM Transactions on Quantum Computing(TQC).

QCE20 provides attendees a unique opportunity to discuss challenges and opportunities with quantum researchers, scientists, engineers, entrepreneurs, developers, students, practitioners, educators, programmers, and newcomers. QCE20 is co-sponsored by the IEEE Computer Society, IEEE Communications Society, IEEE Council on Superconductivity,IEEE Electronics Packaging Society (EPS), IEEE Future Directions Quantum Initiative, IEEE Photonics Society, and IEEETechnology and Engineering Management Society (TEMS).

Registerto be a part of the highly anticipated inaugural IEEE Quantum Week 2020. Visitqce.quantum.ieee.orgfor event news and all program details, including sponsorship and exhibitor opportunities.

About the IEEE Computer Society

The IEEE Computer Society is the worlds home for computer science, engineering, and technology. A global leader in providing access to computer science research, analysis, and information, the IEEE Computer Society offers a comprehensive array of unmatched products, services, and opportunities for individuals at all stages of their professional career. Known as the premier organization that empowers the people who drive technology, the IEEE Computer Society offers international conferences, peer-reviewed publications, a unique digital library, and training programs. Visitwww.computer.orgfor more information.

About the IEEE Communications Society

TheIEEE Communications Societypromotes technological innovation and fosters creation and sharing of information among the global technical community. The Society provides services to members for their technical and professional advancement and forums for technical exchanges among professionals in academia, industry, and public institutions.

About the IEEE Council on Superconductivity

TheIEEE Council on Superconductivityand its activities and programs cover the science and technology of superconductors and their applications, including materials and their applications for electronics, magnetics, and power systems, where the superconductor properties are central to the application.

About the IEEE Electronics Packaging Society

TheIEEE Electronics Packaging Societyis the leading international forum for scientists and engineers engaged in the research, design, and development of revolutionary advances in microsystems packaging and manufacturing.

About the IEEE Future Directions Quantum Initiative

IEEE Quantumis an IEEE Future Directions initiative launched in 2019 that serves as IEEEs leading community for all projects and activities on quantum technologies. IEEE Quantum is supported by leadership and representation across IEEE Societies and OUs. The initiative addresses the current landscape of quantum technologies, identifies challenges and opportunities, leverages and collaborates with existing initiatives, and engages the quantum community at large.

About the IEEE Photonics Society

TheIEEE Photonics Societyforms the hub of a vibrant technical community of more than 100,000 professionals dedicated to transforming breakthroughs in quantum physics into the devices, systems, and products to revolutionize our daily lives. From ubiquitous and inexpensive global communications via fiber optics, to lasers for medical and other applications, to flat-screen displays, to photovoltaic devices for solar energy, to LEDs for energy-efficient illumination, there are myriad examples of the Societys impact on the world around us.

About the IEEE Technology and Engineering Management Society

IEEE TEMSencompasses the management sciences and practices required for defining, implementing, and managing engineering and technology.

Source: IEEE Computer Society

See the original post here:
Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering - HPCwire

David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science – Quantaneo, the Quantum Computing…

Graves, a professor at the University of California, Berkeley, since 1986, is an expert in plasma applications in semiconductor manufacturing. He will become the Princeton Plasma Physics Laboratorys (PPPL) first associate laboratory director for Low-Temperature Plasma Surface Interactions, effective June 1. He will likely begin his new position from his home in Lafayette, California, in the East Bay region of San Francisco.

He will lead a collaborative research effort to not only understand and measure how plasma is used in the manufacture of computer chips, but also to explore how plasma could be used to help fabricate powerful quantum computing devices over the next decade.

This is the apex of our thrust into becoming a multipurpose lab, said Steve Cowley, PPPL director, who recruited Graves. Working with Princeton University, and with industry and the U.S. Department of Energy (DOE), we are going to make a big push to do research that will help us understand how you can manufacture at the scale of a nanometer. A nanometer, one-billionth of a meter, is about ten thousand times less than the width of a human hair.

The new initiative will draw on PPPLs expertise in low temperature plasmas, diagnostics, and modeling. At the same time, it will work closely with plasma semiconductor equipment industries and will collaborate with Princeton University experts in various departments, including chemical and biological engineering, electrical engineering, materials science, and physics. In particular, collaborations with PRISM (the Princeton Institute for the Science and Technology of Materials) are planned, Cowley said. I want to see us more tightly bound to the University in some areas because that way we get cross-fertilization, he said.

Graves will also have an appointment as professor in the Princeton University Department of Chemical and Biological Engineering, starting July 1. He is retiring from his position at Berkeley at the end of this semester. He is currently writing a book (Plasma Biology) on plasma applications in biology and medicine. He said he changed his retirement plans to take the position at PPPL and Princeton University. This seemed like a great opportunity, Graves said. Theres a lot we can do at a national laboratory where theres bigger scale, world-class colleagues, powerful computers and other world-class facilities.

Exciting new direction for the Lab

Graves is already working with Jon Menard, PPPL deputy director for research, on the strategic plan for the new research initiative over the next five years. Its a really exciting new direction for the Lab that will build upon our unique expertise in diagnosing and simulating low-temperature plasmas, Menard said. It also brings us much closer to the university and industry, which is great for everyone.

The staff will grow over the next five years and PPPL is recruiting for an expert in nano-fabrication and quantum devices. The first planned research would use converted PPPL laboratory space fitted with equipment provided by industry. Subsequent work would use laboratory space at PRISM on Princeton Universitys campus. In the longer term, researchers in the growing group would have brand new laboratory and office space as a central part the Princeton Plasma Innovation Center (PPIC), a new building planned at PPPL.

Physicists Yevgeny Raitses, principal investigator for the Princeton Collaborative Low Temperature Plasma Research Facility (PCRF) and head of the Laboratory for Plasma Nanosynthesis, and Igor Kavanovich, co-principal investigator of PCRF, are both internationally-known experts in low temperature plasmas who have forged recent partnerships between PPPL and various industry partners. The new initiative builds on their work, Cowley said.

A priority research area

Research aimed at developing quantum information science (QIS) is a priority for the DOE. Quantum computers could be very powerful in solving complex scientific problems, including simulating quantum behavior in material or chemical systems. QIS could also have applications in quantum communication, especially in encryption, and quantum sensing. It could potentially have an impact in areas such as national security. A key question is whether plasma-based fabrication tools commonly used today will play a role in fabricating quantum devices in the future, Menard said. There are huge implications in that area, Menard said. We want to be part of that.

Graves is an expert on applying molecular dynamics simulations to low temperature plasma-surface interactions. These simulations are used to understand how plasma-generated ions, atoms and molecules interact with various surfaces. He has extensive research experience in academia and industry in plasma-related semiconductor manufacturing. That expertise will be useful for understanding how to make very fine structures and circuits at the nanometer, sub-nanometer and even atom-by-atom level, Menard said. Davids going to bring a lot of modeling and fundamental understanding to that process. That, paired with our expertise and measurement capabilities, should make us unique in the U.S. in terms of what we can do in this area.

Graves was born in Daytona Beach, Florida, and moved a lot as a child because his father was in the U.S. Air Force. He lived in Homestead, Florida; near Kansas City, Missouri; and in North Bay Ontario; and finished high school near Phoenix, Arizona.

Graves received bachelors and masters degrees in chemical engineering from the University of Arizona and went on to pursue a doctoral degree in the subject, graduating with a Ph.D. from the University of Minnesota in 1986. He is a fellow of the Institute of Physics and the American Vacuum Society. He is the author or co-author of more than 280 peer-reviewed publications. During his long career at Berkeley, he has supervised 30 Ph.D. students and 26 post-doctoral students, many of whom are now in leadership positions in industry and academia.

A leader since the 1990s

Graves has been a leader in the use of plasma in the semiconductor industry since the 1990s. In 1996, he co-chaired a National Research Council (NRC) workshop and co-edited the NRCs Database Needs for Modeling and Simulation of Plasma Processing. In 2008, he performed a similar role for a DOE workshop on low-temperature plasmas applications resulting in the report Low Temperature Plasma Science Challenges for the Next Decade.

Graves is an admitted Francophile who speaks (near) fluent French and has spent long stretches of time in France as a researcher. He was named Matre de Recherche (master of research) at the cole Polytechnic in Palaiseau, France, in 2006. He was an invited researcher at the University of Perpignan in 2010 and received a chaire dexcellence from the Nanoscience Foundation in Grenoble, France, to study plasma-graphene interactions.

He has received numerous honors during his career. He was appointed the first Lam Research Distinguished Chair in Semiconductor Processing at Berkeley for 2011-2016. More recently, he received the Will Allis Prize in Ionized Gas from the American Physical Society in 2014 and the 2017 Nishizawa Award, associated with the Dry Process Symposium in Japan. In 2019, he was appointed foreign expert at Huazhong University of Science and Technology in Wuhan, China. He served as the first senior editor of IEEE Transactions on Radiation and Plasma Medical Science.

Graves has been married for 35 years to Sue Graves, who recently retired from the City of Lafayette, where she worked in the school bus program. The couple has three adult children. Graves enjoys bicycling and yoga and the couple loves to travel. They also enjoy hiking, visiting museums, listening to jazz music, and going to the theater.

Visit link:
David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science - Quantaneo, the Quantum Computing...

Video: The Future of Quantum Computing with IBM – insideHPC

Dario Gil from IBM Research

In this video, Dario Gil from IBM shares results from the IBM Quantum Challenge and describes how you can access and program quantum computers on the IBM Cloud today.

From May 4-8, we invited people from around the world to participate in the IBM Quantum Challengeon the IBM Cloud. We devised the Challenge as a global event to celebrateour fourth anniversary of having a real quantum computer on the cloud. Over those four days 1,745people from45countries came together to solve four problems ranging from introductory topics in quantum computing, to understanding how to mitigate noise in a real system, to learning about historic work inquantum cryptography, to seeing how close they could come to the best optimization result for a quantum circuit.

Those working in the Challenge joined all those who regularly make use of the 18quantum computing systems that IBM has on the cloud, includingthe 10 open systemsand the advanced machines available within theIBM Q Network. During the 96 hours of the Challenge, the total use of the 18 IBM Quantum systems on the IBM Cloud exceeded 1 billion circuits a day. Together, we made history every day the cloud users of the IBM Quantum systems made and then extended what can absolutely be called a world record in computing.

Every day we extend the science of quantum computing and advance engineering to build more powerful devices and systems. Weve put new two new systems on the cloud in the last month, and so our fleet of quantum systems on the cloud is getting bigger and better. Well be extending this cloud infrastructure later this year by installing quantum systems inGermanyand inJapan. Weve also gone more and more digital with our users with videos, online education, social media, Slack community discussions, and, of course, the Challenge.

Dr. Dario Gil is the Director of IBM Research, one of the worlds largest and most influential corporate research labs. IBM Research is a global organization with over 3,000 researchers at 12 laboratories on six continents advancing the future of computing. Dr. Gil leads innovation efforts at IBM, directing research strategies in Quantum, AI, Hybrid Cloud, Security, Industry Solutions, and Semiconductors and Systems. Dr. Gil is the 12th Director in its 74-year history. Prior to his current appointment, Dr. Gil served as Chief Operating Officer of IBM Research and the Vice President of AI and Quantum Computing, areas in which he continues to have broad responsibilities across IBM. Under his leadership, IBM was the first company in the world to build programmable quantum computers and make them universally available through the cloud. An advocate of collaborative research models, he co-chairs the MIT-IBM Watson AI Lab, a pioneering industrial-academic laboratory with a portfolio of more than 50 projects focused on advancing fundamental AI research to the broad benefit of industry and society.

Sign up for our insideHPC Newsletter

Read more from the original source:
Video: The Future of Quantum Computing with IBM - insideHPC

IonQ CEO Peter Chapman on how quantum computing will change the future of AI – VentureBeat

Businesses eager to embrace cutting-edge technology are exploring quantum computing, which depends on qubits to perform computations that would be much more difficult, or simply not feasible, on classical computers. The ultimate goals are quantum advantage, the inflection point when quantum computers begin to solve useful problems. While that is a long way off (if it can even be achieved), the potential is massive. Applications include everything from cryptography and optimization to machine learning and materials science.

As quantum computing startup IonQ has described it, quantum computing is a marathon, not a sprint. We had the pleasure of interviewing IonQ CEO Peter Chapman last month to discuss a variety of topics. Among other questions, we asked Chapman about quantum computings future impact on AI and ML.

The conversation quickly turned to Strong AI, or Artificial General Intelligence (AGI), which does not yet exist. Strong AI is the idea that a machine could one day understand or learn any intellectual task that a human can.

AI in the Strong AI sense, that I have more of an opinion [about], just because I have more experience in that personally, Chapman told VentureBeat. And there was a really interesting paper that just recently came out talking about how to use a quantum computer to infer the meaning of words in NLP. And I do think that those kinds of things for Strong AI look quite promising. Its actually one of the reasons I joined IonQ. Its because I think that does have some sort of application.

In a follow-up email, Chapman expanded on his thoughts. For decades, it was believed that the brains computational capacity lay in the neuron as a minimal unit, he wrote. Early efforts by many tried to find a solution using artificial neurons linked together in artificial neural networks with very limited success. This approach was fueled by the thought that the brain is an electrical computer, similar to a classical computer.

However, since then, I believe we now know the brain is not an electrical computer, but an electrochemical one, he added. Sadly, todays computers do not have the processing power to be able to simulate the chemical interactions across discrete parts of the neuron, such as the dendrites, the axon, and the synapse. And even with Moores law, they wont next year or even after a million years.

Chapman then quoted Richard Feynman, who famously said Nature isnt classical, dammit, and if you want to make a simulation of nature, youd better make it quantum mechanical. And by golly, its a wonderful problem because it doesnt look so easy.

Similarly, its likely Strong AI isnt classical, its quantum mechanical as well, Chapman said.

One of IonQs competitors, D-Wave, argues that quantum computing and machine learning are extremely well matched. Chapman is still on the fence.

I havent spent enough time to really understand it, he admitted. There clearly [are] a lot of people who think that ML and quantum have an overlap. Certainly, if you think of 85% of all ML produces a decision tree, and the depth of that decision tree could easily be optimized with a quantum computer. Clearly, there [are] lots of people that think that generation of the decision tree could be optimized with a quantum computer. Honestly, I dont know if thats the case or not. I think its still a little early for machine learning, but there clearly [are] so many people that are working on it. Its hard to imagine it doesnt have [an] application.

Chapman continued in a later email: ML has intimate ties to optimization: Many learning problems are formulated as minimization of some loss function on a training set of examples. Generally, Universal Quantum Computers excel at these kinds of problems.

He listed three improvements in ML that quantum computing will likely allow:

Whether Strong AI or ML, IonQ isnt particularly interested in either. The company leaves that to its customers and future partners.

Theres so much to be to be done in a quantum, Chapman said. From education at one end all the way to the quantum computer itself. I think some of our competitors have taken on lots of the entire problem set. We at IonQ are just focused on producing the worlds best quantum computer for them. We think thats a large enough task for a little company like us to handle.

So, for the moment were kind of happy to let everyone else work on different problems, he added. We just dont have extra bandwidth or resources to put into working on machine learning algorithms. And luckily, there [are] lots of other companies that think that there [are] applications there. Well partner with them in the sense that well provide the hardware that their algorithms will run on. But were not in the ML business, per se.

Continued here:
IonQ CEO Peter Chapman on how quantum computing will change the future of AI - VentureBeat

Devs: Here’s the real science behind the quantum computing TV show – New Scientist News

In TV series Devs, a tech company has built an extremely powerful quantum computer. The show is both beautiful and captivating, says Rowan Hooper

By Rowan Hooper

BBC/FX Networks

Devs

BBC iPlayer and FX on Hulu

Halfway through episode two of Devs, there is a scene that caused me first to gasp, and then to swear out loud. A genuine WTF moment. If this is what I think it is, I thought, it is breathtakingly audacious. And so it turns out. The show is intelligent, beautiful and ambitious, and to aid in your viewing pleasure, this spoiler-free review introduces some of the cool science it explores.

Advertisement

Alex Garlands eight-part seriesopens with protagonists Lilyand Sergei, who live in a gorgeous apartment in San Francisco. Like their real-world counterparts, people who work atFacebook orGoogle, the pair take the shuttle bus to work.

They work at Amaya, a powerful but secretive technology company hidden among the redwoods. Looming over the trees is a massive, creepy statue of a girl: the Amaya the company is named for.

We see the company tag line asLily and Sergei get off the bus: Your quantum future. Is it just athrow-away tag, or should we think about what that line means more precisely?

Sergei, we learn, works on artificial intelligence algorithms. At the start of the show, he gets some time with the boss, Forest, todemonstrate the project he has been working on. He has managed to model the behaviour of a nematode worm. His team has simulated the worm by recreating all 302 of its neurons and digitally wiring them up. This is basically the WormBot project, an attempt to recreate a life form completely in digital code. The complete map of the connections between the 302 neurons of the nematode waspublished in 2019.

We dont yet have the processing power to recreate theseconnections dynamically in a computer, but when we do, it will be interesting to consider if the resulting digital worm, a complete replica of an organic creature, should be considered alive.

We dont know if Sergeis simulation is alive, but it is so good, he can accurately predict the behaviour of the organic original, a real worm it is apparently simulating, up to 10 seconds in thefuture. This is what I like about Garlands stuff: the show has only just started and we have already got some really deep questions about scientific research that is actually happening.

Sergei then invokes the many-worlds interpretation of quantum mechanics conceived by Hugh Everett. Although Forest dismisses this idea, it is worth getting yourhead around it because the show comes back to it. Adherents say that the maths of quantum physics means the universe isrepeatedly splitting into different versions, creating a vast multiverse of possible outcomes.

At the core of Amaya is the ultrasecretive section where thedevelopers work. No one outside the devs team knows what it is developing, but we suspect it must be something with quantum computers. I wondered whether the devssection is trying to do with the 86 billion neurons of thehuman brain what Sergei has been doing with the 302 neurons of the nematode.

We start to find out when Sergei is selected for a role in devs. He must first pass a vetting process (he is asked if he is religious, a question that makes sense later) and then he is granted access to the devs compound sealed by alead Faraday cage, gold mesh andan unbroken vacuum.

Inside is a quantum computer more powerful than any currently in existence. How many qubits does it run, asks Sergei, looking inawe at the thing (it is beautiful, abit like the machines being developed by Google and IBM). Anumber that it is meaningless to state, says Forest. As a reference point, the best quantum computers currently manage around 50 qubits, or quantum bits. We can only assume that Forest has solved the problem ofdecoherence when external interference such as heat or electromagnetic fields cause qubits to lose their quantum properties and created a quantum computer with fantasticprocessing power.

So what are the devs using it for? Sergei is asked to guess, and then left to work it out for himself from gazing at the code. He figures it out before we do. Then comes that WTF moment. To say any more will give away the surprise. Yet as someone remarks, the world is deterministic, but with this machine we are gaining magical powers. Devs has its flaws, but it is energising and exciting to see TV this thoughtful: it cast a spell on me.

More on these topics:

See the article here:
Devs: Here's the real science behind the quantum computing TV show - New Scientist News