Archive for the ‘Quantum Computing’ Category

Closing the quantum computing skills gap could make all the difference in tackling climate change – The Globe and Mail

Two years ago, the UNs Intergovernmental Panel on Climate Change reported that global emissions must be slashed to net zero by 2050 if we are to avoid the full devastation of climate change. Nearly 120 countries (including Canada) representing 65 per cent of global emissions and more than 70 per cent of the world economy have committed to working on net-zero targets. However, while the goal of these countries is the same, the approach by which to achieve it varies.

Advanced technologies are poised to be game-changers in the battle to overcome climate change. Quantum computing is just one example, as researchers learn more about its potential, including discovering new ways to capture and transform CO2s harmful emissions into usable energy and remove carbon from the atmosphere. Scientists are also working on it to create molecules that replace the chemical catalysts needed for fertilizer production a process which now accounts for up to 3 per cent of the energy used on the planet.

While all computing systems depend on an ability to store and manage information, some of the solutions to challenges we face now such as CO2 reduction may not be achievable using todays computational power. Quantum computers, which leverage quantum mechanical phenomena to perform computations, could solve in mere seconds problems that once might have taken a million years to crack.

Story continues below advertisement

The potential of quantum computing is not lost on government and industry leaders. Research firm Gartner projects that, by 2023, 20 per cent of organizations will have earmarked quantum computing in their budgets, compared with less than one per cent in 2018. This is good news for Canada, a country considered to be a pioneer in quantum science. According to a recent study by McKinsey and Company, our country has been ranked first in the world in quantum computing science, first in the G7 in per-capita spending on research in on the subject, and fifth in the world in total expenditure on quantum science in general. This translates into a $142.4-billion opportunity that could employ 229,000 Canadians by 2040, according to the National Research Council of Canada. This potential demand for a brand-new pool of talent to fill potentially more than a quarter of million jobs means that we need to prepare our workforce now.

While science and math are the foundation of a career in quantum computing, there is no single set of skills that will take you there. Physics, computer science and engineering are all solid competencies, but as quantum is so interdisciplinary, exploring other options is important too. For example, cybersecurity expertise will be in higher demand as the potential for cybercrime grows at the same rate as the technology.

As with many opportunities, a diverse background of knowledge is often helpful, especially as the pervasiveness of quantum technology grows across more industries, including finance, health care, telecommunications, chemical and pharmaceutical manufacturing. Education that prepares for careers as technical writers, project managers, analysts and other similar roles is beneficial. The ability to communicate, think critically, collaborate and be curious is also important. And, as we move to a greener economy both in Canada and worldwide, knowledge of climate issues is valuable.

To fill the skills gap that the growth of quantum computing will create, academic institutions, companies and governments across Canada should be developing and executing strategies now. Businesses can start identifying what current job roles could evolve into quantum-based ones with some reskilling. Cross-industry and cross-business collaboration would also serve to develop key employee skills for a capable workforce nationwide. Finally, governments should ensure that their training programs recognize the growth potential of quantum, especially as it develops to meet the needs of stronger environmental measures.

In the case of academics, quantum education ought to be integrated into curriculum starting in high school and be offered widely at the post-secondary level. On this front, is progress being made here in Canada as programs launch at universities across the country, including the Universit de Sherbrooke, where last June IBM announced the new IBM Quantum Hub the first in Canada. Producing a skilled quantum workforce is not a small endeavour, so creating the opportunities for skills growth should be a priority.

The theme of 2021 is most certainly recovery and progress. As the country moves forward, we must look for new occasions to innovate and opportunities for growth we may not have had before. It is important now more than ever to do everything we can to ensure our workforce is prepared for the jobs to come, as well as for a more advanced and sustainable future.

Claude Guay, president of IBM Canada.

Shan Qiao Photo, Shan Qiao/Handout

Claude Guay is the president of IBM Canada. He is the leadership lab columnist for January 2021.

Story continues below advertisement

This column is part of Globe Careers Leadership Lab series, where executives and experts share their views and advice about the world of work. Find all Leadership Lab stories at tgam.ca/leadershiplab and guidelines for how to contribute to the column here.

Stay ahead in your career. We have a weekly Careers newsletter to give you guidance and tips on career management, leadership, business education and more. Sign up today or follow us at @Globe_Careers.

Go here to see the original:
Closing the quantum computing skills gap could make all the difference in tackling climate change - The Globe and Mail

Quantum Computing Market Breaking New Grounds and Touch New Level in upcoming year by D-Wave Systems, Google, IBM, Intel, Microsoft KSU | The…

Quantum computing make use of significant subatomic particle capability to be present in more than one state at any given point of time. Due to the peculiar behavior of these particles, processing can be done in a faster manner and with minimal power requirement than traditional computers. Traditional computers encode information in bits with the values 1 or 0. These values act as on/off switches that eventually drive computer functions. On the other hand, quantum computing uses quantum bits i.e. qubit. However, they can store more information than 1s or 0s. It works on the two very important principles of quantum physics i.e. entanglement and superposition.

The global Quantum Computing Market size is expected to Expand at Significant CAGR of +24% during forecast period (2021-2027).

The report, titled Global Quantum Computing Market defines and briefs readers about its products, applications, and specifications. The research lists key companies operating in the global market and also highlights the key changing trends adopted by the companies to maintain their dominance. By using SWOT analysis and Porters five force analysis tools, the strengths, weaknesses, opportunities, and threats of key companies are all mentioned in the report. All leading players in this global market are profiled with details such as product types, business overview, sales, manufacturing base, competitors, applications, and specifications.

Get Sample Copy (Including FULL TOC, Graphs and Tables) of this report @:

https://www.a2zmarketresearch.com/sample?reportId=705

Note In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Top Key Vendors of this Market are:

D-Wave Systems, Google, IBM, Intel, Microsoft, 1QB Information Technologies, Anyon Systems, Cambridge Quantum Computing, ID Quantique, IonQ, QbitLogic, QC Ware, Quantum Circuits, Qubitekk, QxBranch, Rigetti Computing.

Various factors are responsible for the markets growth trajectory, which are studied at length in the report. In addition, the report lists down the restraints that are posing threat to the global Quantum Computing market. It also gauges the bargaining power of suppliers and buyers, threat from new entrants and product substitute, and the degree of competition prevailing in the market. The influence of the latest government guidelines is also analyzed in detail in the report. It studies the Quantum Computing markets trajectory between forecast periods.

The report provides insights on the following pointers:

Market Penetration:Comprehensive information on the product portfolios of the top players in the Quantum Computing market.

Product Development/Innovation:Detailed insights on the upcoming technologies, R&D activities, and product launches in the market.

Competitive Assessment: In-depth assessment of the market strategies, geographic and business segments of the leading players in the market.

Market Development:Comprehensive information about emerging markets. This report analyzes the market for various segments across geographies.

Market Diversification:Exhaustive information about new products, untapped geographies, recent developments, and investments in the Quantum Computing market.

Get up to 30% Discount on this Premium Report @:

https://www.a2zmarketresearch.com/discount?reportId=705

Regions Covered in the Global Quantum Computing Market Report 2021:The Middle East and Africa(GCC Countries and Egypt)North America(the United States, Mexico, and Canada)South America(Brazil etc.)Europe(Turkey, Germany, Russia UK, Italy, France, etc.)Asia-Pacific(Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

The cost analysis of the Global Quantum Computing Market has been performed while keeping in view manufacturing expenses, labor cost, and raw materials and their market concentration rate, suppliers, and price trend. Other factors such as Supply chain, downstream buyers, and sourcing strategy have been assessed to provide a complete and in-depth view of the market. Buyers of the report will also be exposed to a study on market positioning with factors such as target client, brand strategy, and price strategy taken into consideration.

Reasons for buying this report:

Table of Contents

Global Quantum Computing Market Research Report 2021 2027

Chapter 1 Quantum Computing Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Quantum Computing Market Forecast

Buy Exclusive Report @:

https://www.a2zmarketresearch.com/buy?reportId=705

If you have any special requirements, please let us know and we will offer you the report as you want.

About A2Z Market Research:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.

Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

sales@a2zmarketresearch.com

+1 775 237 4147

Originally posted here:
Quantum Computing Market Breaking New Grounds and Touch New Level in upcoming year by D-Wave Systems, Google, IBM, Intel, Microsoft KSU | The...

Mind the (skills) gap: Cybersecurity talent pool must expand to take advantage of quantum computing opportunities – The Daily Swig

Experts at the CES 2021 conference stress importance of security education

The second age of quantum computing is poised to bring a wealth of new opportunities to the cybersecurity industry but in order to take full advantage of these benefits, the skills gap must be closed.

This was the takeaway of a discussion between two cybersecurity experts at the CES 2021 virtual conference last week.

Pete Totrorici, director of Joint Information Warfare at the Department of Defense (DoD) Joint Artificial Intelligence (AI) Center, joined Vikram Sharma, CEO of QuintessenceLabs, during a talk titled AI and quantum cyber disruption.

Quantum computing is in its second age, according to Sharma, meaning that the cybersecurity industry will soon start to witness the improvements in encryption, AI, and other areas that have long been promised by the technology.

BACKGROUND Quantum leap forward in cryptography could make niche technology mainstream

Quantum-era cybersecurity will wield the power to detect and deflect quantum-era cyber-attacks before they cause harm, a report from IBM reads.

It is the technology of our time, indeed, commented Sharma, who is based in Canberra, Australia.

QuintessenceLabs is looking at the application of advanced quantum technologies within the cybersecurity sphere, says Sharma, in particular the realm of data protection.

Governments and large organizations have also invested in the quantum space in recent years, with the US, UK, and India all providing funding for research.

The Joint AI Center was founded in 2018 and was launched to transform the Department of Defense to the adoption of artificial intelligence, said Totrorici.

A subdivision of the US Armed Forces, the center is responsible for exploring the use of AI and AI-enhanced communication for use in real-world combat situations.

Specifically, were trying to identify how we employ AI solutions that will have a mission impact, he said.

Across the department our day-to-day composes everything from development strategy, policy, product development, industry engagement, and other outreach activities, but if I need to identify something that I think is my most significant challenge today, its understanding the departments varied needs.

As with last year, CES took place virtually in 2021 due to the coronavirus pandemic

In order to reach these needs, Totrorici said that relationships between the center, academia, industry, and government need to be established.

There was a time when the DoD go it alone, [however] those days are long gone.

If were going to solve problems like AI employment or quantum development, [it] is going to require partnerships, he said.

Totrorici and Sharma both agreed that while the future is certainly in quantum computing, the ever-widening cyber skills gap needs to be addressed to take advantage of its potential.

Indeed, these partnerships cannot be formed if there arent enough experts in the field.

Totrorici said: Forefront in the mind of the DoD nowadays is, How do we how do we cultivate and retain talent?

I still think the United States does a great job of growing and building talent. Now the question becomes, Will we retain that talent, how do we leverage that time going forward, and where are we building it?

YOU MAY ALSO LIKE Quantum encryption the devil is in the implementation

The (ISC)2 2020 Workforce Study (PDF) found that the current cybersecurity industry needs to grow by 89% in order to effectively protect against cyber threats.

Of the companies surveyed, the study also revealed that 64% current have some shortage of dedicated cybersecurity staff.

Here in Australia weve recently established whats called the Sydney Quantum Academy, and that is an overarching group that sits across four leadings institutions that are doing some cutting-edge work in quantum in the country, said Sharma.

One of the aims of that academy is to produce quantum skilled folks broadly, but also looking specifically in the quantum cybersecurity area.

So certainly, some small initiatives that [have] kicked off, but I think theres a big gap there that that will need to be filled as we move forward.

READ MORE Infosec pro Vandana Verma on improving diversity and helping to grow the Indian security community

Visit link:
Mind the (skills) gap: Cybersecurity talent pool must expand to take advantage of quantum computing opportunities - The Daily Swig

IonQ and South Korea’s Q Center Announce Three-Year Quantum Alliance – PRNewswire

COLLEGE PARK, Md., Jan. 19, 2021 /PRNewswire/ --IonQ, the leader in quantum computing, today announced a three-year alliance with South Korea's Quantum Information Research Support Center, or Q Center. The Q Center is an independent organization at Sungkyunkwan University (SKKU) focused on the creation of a rich research ecosystem in the field of quantum information science. The partnership will make IonQ's trapped-ion quantum computers available for research and teaching across South Korea.

IonQ's systems have the potential to solve the world's most complex problems with the greatest accuracy. To date, the company's quantum computers have a proven track record of outperforming all other available quantum hardware.

Researchers and students across South Korea will be able to immediately start running jobs on IonQ's quantum computers. This partnership will enable researchers, scientists, and students to learn, develop, and deploy quantum applications on one of the world's leading quantum systems.

"I am proud to see IonQ enter this alliance with Q Center," said Peter Chapman, CEO & President of IonQ. "IonQ's hardware will serve as the backbone for quantum research. Our technology will play a critical role not only in the advancement of quantum, but also in fostering the next generation of quantum researchers and developers in South Korea."

"Our mission is to cultivate and promote the advancement of quantum information research in South Korea," said SKKU Professor of SAINT (SKKU Advanced Institute of NanoTechnology), Yonuk Chong. "We believe IonQ has the most advanced quantum technology available, and through our partnership, we will be able to make tremendous strides in the advancement of the industry."

This alliance builds on IonQ's continued success. IonQ recently released a product roadmap to deploy rack mounted quantum computers by 2023, and achieve broad quantum advantage by 2025. IonQ also recently unveiled a new $5.5 million, 23,000 square foot Quantum Data Center in Maryland's Discovery District. IonQ has raised $84 million in funding to date, announcing new investment from Lockheed Martin, Robert Bosch Venture Capital GmbH (RBVC) and Cambium earlier this year. Previous investors include Samsung Electronics, Mubadala Capital, GV, Amazon, and NEA. The company's two co-founders were also recently named to the National Quantum Initiative Advisory Committee (NQIAC).

About IonQIonQ is the leader in quantum computing. By making our quantum hardware accessible through the cloud, we're empowering millions of organizations and developers to build new applications to solve the world's most complex problems in business, and across society. IonQ's unique approach to quantum computing is to start with nature: using individual atoms as the heart of our quantum processing units. We levitate them in space with electric potentials applied to semiconductor-defined electrodes on a chip, and then use lasers to do everything from initial preparation to final readout and the quantum gate operations in between. The unique IonQ architecture of random-access processing of qubits in a fully connected and modular architecture will allow unlimited scaling. The IonQ approach requires atomic physics, precision optical and mechanical engineering, and fine-grained firmware control over a variety of components. Leveraging this approach, IonQ provides both a viable technological roadmap to scale and the flexibility necessary to explore a wide range of application spaces in the near term. IonQ was founded in 2015 by Jungsang Kim and Christopher Monroe and their systems are based on foundational research at The University of Maryland and Duke University.

About SKKUSungkyunkwan University (SKKU) is a leading research university located in Seoul, South Korea. SKKU is known around the world for the quality of its research and invests heavily in research and development. SKKU has more than 600 years of history as a leading educational institution, and is guided by the founding principles of benevolence, righteousness, propriety, wisdom, and self-cultivation.

SOURCE IonQ

https://ionq.com

Continue reading here:
IonQ and South Korea's Q Center Announce Three-Year Quantum Alliance - PRNewswire

Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon – CircleID

This is the fourth in a multi-part series on cryptography and the Domain Name System (DNS).

One of the "key" questions cryptographers have been asking for the past decade or more is what to do about the potential future development of a large-scale quantum computer.

If theory holds, a quantum computer could break established public-key algorithms including RSA and elliptic curve cryptography (ECC), building on Peter Shor's groundbreaking result from 1994.

This prospect has motivated research into new so-called "post-quantum" algorithms that are less vulnerable to quantum computing advances. These algorithms, once standardized, may well be added into the Domain Name System Security Extensions (DNSSEC) thus also adding another dimension to a cryptographer's perspective on the DNS.

(Caveat: Once again, the concepts I'm discussing in this post are topics we're studying in our long-term research program as we evaluate potential future applications of technology. They do not necessarily represent Verisign's plans or position on possible new products or services.)

The National Institute of Standards and Technology (NIST) started a Post-Quantum Cryptography project in 2016 to "specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers."

Security protocols that NIST is targeting for these algorithms, according to its 2019 status report (Section 2.2.1), include: "Transport Layer Security (TLS), Secure Shell (SSH), Internet Key Exchange (IKE), Internet Protocol Security (IPsec), and Domain Name System Security Extensions (DNSSEC)."

The project is now in its third round, with seven finalists, including three digital signature algorithms, and eight alternates.

NIST's project timeline anticipates that the draft standards for the new post-quantum algorithms will be available between 2022 and 2024.

It will likely take several additional years for standards bodies such as the Internet Engineering Task (IETF) to incorporate the new algorithms into security protocols. Broad deployments of the upgraded protocols will likely take several years more.

Post-quantum algorithms can therefore be considered a long-term issue, not a near-term one. However, as with other long-term research, it's appropriate to draw attention to factors that need to be taken into account well ahead of time.

The three candidate digital signature algorithms in NIST's third round have one common characteristic: all of them have a key size or signature size (or both) that is much larger than for current algorithms.

Key and signature sizes are important operational considerations for DNSSEC because most of the DNS traffic exchanged with authoritative data servers is sent and received via the User Datagram Protocol (UDP), which has a limited response size.

Response size concerns were evident during the expansion of the root zone signing key (ZSK) from 1024-bit to 2048-bit RSA in 2016, and in the rollover of the root key signing key (KSK) in 2018. In the latter case, although the signature and key sizes didn't change, total response size was still an issue because responses during the rollover sometimes carried as many as four keys rather than the usual two.

Thanks to careful design and implementation, response sizes during these transitions generally stayed within typical UDP limits. Equally important, response sizes also appeared to have stayed within the Maximum Transmission Unit (MTU) of most networks involved, thereby also avoiding the risk of packet fragmentation. (You can check how well your network handles various DNSSEC response sizes with this tool developed by Verisign Labs.)

The larger sizes associated with certain post-quantum algorithms do not appear to be a significant issue either for TLS, according to one benchmarking study, or for public-key infrastructures, according to another report. However, a recently published study of post-quantum algorithms and DNSSEC observes that "DNSSEC is particularly challenging to transition" to the new algorithms.

Verisign Labs offers the following observations about DNSSEC-related queries that may help researchers to model DNSSEC impact:

A typical resolver that implements both DNSSEC validation and qname minimization will send a combination of queries to Verisign's root and top-level domain (TLD) servers.

Because the resolver is a validating resolver, these queries will all have the "DNSSEC OK" bit set, indicating that the resolver wants the DNSSEC signatures on the records.

The content of typical responses by Verisign's root and TLD servers to these queries are given in Table 1 below. (In the table, . are the final two labels of a domain name of interest, including the TLD and the second-level domain (SLD); record types involved include A, Name Server (NS), and DNSKEY.)

For an A or NS query, the typical response, when the domain of interest exists, includes a referral to another name server. If the domain supports DNSSEC, the response also includes a set of Delegation Signer (DS) records providing the hashes of each of the referred zone's KSKs the next link in the DNSSEC trust chain. When the domain of interest doesn't exist, the response includes one or more Next Secure (NSEC) or Next Secure 3 (NSEC3) records.

Researchers can estimate the effect of post-quantum algorithms on response size by replacing the sizes of the various RSA keys and signatures with those for their post-quantum counterparts. As discussed above, it is important to keep in mind that the number of keys returned may be larger during key rollovers.

Most of the queries from qname-minimizing, validating resolvers to the root and TLD name servers will be for A or NS records (the choice depends on the implementation of qname minimization, and has recently trended toward A). The signature size for a post-quantum algorithm, which affects all DNSSEC-related responses, will therefore generally have a much larger impact on average response size than will the key size, which affects only the DNSKEY responses.

Post-quantum algorithms are among the newest developments in cryptography. They add another dimension to a cryptographer's perspective on the DNS because of the possibility that these algorithms, or other variants, may be added to DNSSEC in the long term.

In my next post, I'll make the case for why the oldest post-quantum algorithm, hash-based signatures, could be a particularly good match for DNSSEC. I'll also share the results of some research at Verisign Labs into how the large signature sizes of hash-based signatures could potentially be overcome.

Read the previous posts in this six-part blog series:

The rest is here:
Securing the DNS in a Post-Quantum World: New DNSSEC Algorithms on the Horizon - CircleID