Archive for the ‘Quantum Computing’ Category

Spain’s CaixaBank Teams With IBM Services to Accelerate Cloud Transformation and Innovation in the Financial Services – AiThority

Red Hat OpenShift and AI engaged to help the bank to roll out new digital offerings delivering enhanced customer experiences

CaixaBank, a leading financial institution inSpainandPortugal, serving more than 15.5 million customers, has announced an agreement with IBM Servicesto help accelerate its hybrid cloud journey and continue their work to increase the banks capability to develop innovative, digital-first solutions to enhance client experiences.

CaixaBank will leverage IBM Cloud Pak for Applications running on Red Hat OpenShift to manage workloads and applications across its overall cloud infrastructure. The bank also agreed to continue to work with IBM in their joint innovation center to apply advanced technologies like AI, and additionally explore quantum computing and blockchain solutions. The companies will continue to seek to co-create new solutions for the banking industry with a goal to help quickly process a large number of transactions in an open, secure and scalable environment while delivering improved customer experiences.

Recommended AI News: Self-Driving Vehicle System Assists Life Plan Community During COVID-19 Pandemic

With a key focus on technological innovation for the industry, CaixaBank isSpainsleading digital financial services provider, serving more than 6.5 million digital clients. CaixaBank is also one of the pioneering banks in the application of artificial intelligence for financial services, developing one of the first virtual banking assistants created inEurope. Built with IBM Watson, the AI-based virtual assistant manages more than 1.5 million client conversations each month, handling a spectrum of tasks such as helping bank employees quickly obtain relevant detailed information about new client offerings and quickly assisting mobile customers via chat with day-to-day queries. This approach frees up employee time to focus on serving customers.

IBM has been a strategic technology provider for CaixaBank since 2011. Along with renewing their existing relationship, the recent agreements are also focused on accelerating innovation and digital transformation, while also strengthening the longtime collaboration between IBM and the bank, chaired byJordi Gualand CEOGonzalo Gortzar.

Our company, the leader in digital customers inSpain, has renewed our relationship with IBM to allow us to continue innovating and transforming the way we interact with our customers, said Gonzalo Gortzar, CaixaBanks CEO. By strengthening and expanding the collaboration with a company that is a global model in innovation for the finance industry, we will accelerate, even further, our digital capabilities to continue developing innovative projects and services.

Recommended AI News: Insightful Science Acquires nQuery, Builds on Portfolio of Category-Leading Scientific Software Solutions

IBM is bringing its deep financial services industry experience to help generate long term value to CaixaBank and its clients. By leveraging IBM Cloud Pak for Applications, CaixaBank can modernize and create applications with increased agility and security while addressing compliance requirements within a hybrid cloud environment.

We are pleased to be on this digital transformation journey with CaixaBank, an innovation leader in the banking industry, said Juan Zufiria, Senior Vice President, Global Technology Services. With this collaboration, we are laying the foundation to build a model, not just for CaixaBank and its millions of customers, but also for the future of the industry. The open cloud environment can allow the bank to accelerate its innovation and offer a more agile way to bring new digital services to its customers with added flexibility and security.

The IBM Cloud Pak for Applicationssolution is designed to help reduce risk and improve operational resiliency with an estimated processing power and data storage capability of 105,000 terabytes, a capacity equal to 200 times the volume of a digital library with all the books listed in the world in all languages.

Researchers at the CaixaBank-IBM innovation center have previously been exploring technologies for the future of financial services and the recent agreement expands to include with blockchain and quantum computing. Recently, CaixaBank developed a prototype of a machine learning algorithm based on quantum computing to analyze customers based on credit risk.

Recommended AI News: Factorin Reports $500 Million Transaction Turnover & 246k Processed Invoices Since in One Year

Share and Enjoy !

See the original post here:
Spain's CaixaBank Teams With IBM Services to Accelerate Cloud Transformation and Innovation in the Financial Services - AiThority

Why your website may be packed with malware – TechHQ

Earlier this year, White House officials announced plans to increase federal funding for the research and development of AI and quantum computing.

The proposed budget of US$4.8 trillion is set to help the nation advance in these emerging technologies, and ultimately, strengthen national security with the integration of AI and quantum computing into the cyber realm.

That declaration of war spoke the scale of the cyberthreat problem today, and its one that has continued to gather pace amid the pandemic.

The hike has led both Interpol and Europol to release a report underlining the rise of pandemic-themed social engineering attacks and the increased exploitation of teleworking vulnerabilities.

Despite stringent lockdown measures being lifted, the number of cyberattacks shows little sign of dropping.

Sitelock, a global cybersecurity and protection firm, has revealed that sites face up to 94 attacks per day. This is an increase of 52% from last year.

The figure is based on an analysis of more than 7 million websites, with the firm aiming to gain more insights into the cyberthreat landscape. The report enables businesses to better understand the invisible threats that their companies are up against.

Joining TechHQ in an interview, Logan Kipp, Director at SiteLock shared insights on the current cyberthreat landscape, going in-depth with the kinds of pandemic-induced cybercrimes that are on the rise and suggestions SMEs can follow to defend their digital sites.

When asked about the surge in web-based attacks, Kipp explained, a dramatic increase in attacks in the last year is that resources, such as powerful web servers, have grown increasingly accessible to the public.

Reduced cost in operations and solutions that require less technical skills to operate means that there are more web environments than ever before, making a green field of opportunity for adversaries.

With an ever-expanding web environment, Sitelock estimates that nearly 12.8 million sites are infected with malware worldwide thats about one out of every 100 sites.

Approximately nine out of ten of these infected sites are still not blacklisted by search engines, with users unknowingly clicking on them.

Search engines are only capable of scanning websites externally for malware, which at times is not enough to reveal symptoms of being compromised malware is increasingly intelligent and adept in disguise. It can be made to present itself as inactive to avoid detection.

Kipp added, Search engines will also often err on the side of caution when blacklisting websites to avoid reporting errors that could potentially cause business disruption.

Malware infiltrating or embedded in a system can remain hidden until real damage is done and the consequences visible, leading to mass monetary and productivity losses.

Sitelocks report also listed top cyberthreats that were commonly found in infected sites, among those most prevalent were backdoor (65%), filehacker threats (48%), and malicious eval request (22%).

Backdoor cyberthreats remain a popular approach for cybercriminals to gain administrative access to a targeted system. Kipp elaborated that backdoors are frequently left by attackers as a foothold after successfully breaching a website. The most common variations of backdoors can also be found readily available on the regular internet and dark web.

A subgroup of backdoor, filehacker threats aim to propagate malware throughout a websites hosting environment. Kipp added that file hackers focuses on modifying existing files or deploying brand new malware files. Another form of attack includes creating thousands of spam files on the server through a simple PHP upload script. In the end, file hackers are capable of modifying or injecting code into existing files on a website as well.

Malicious eval requests are then used to inject or run malicious code. Kipp elaborated that cybercriminals use this to unpack or decode other malicious software efficiently, often in a single line of code allowing an adversary to remotely execute arbitrary code on a breached site.

Since this type of malware is more lightweight than other backdoor types, it can easily go unnoticed by the naked eye because of their minimalist approach.

Recognizing the various modus operandi of malware threats, it is essential for businesses to not only be aware of these emerging cyberattacks but also translate insights into actionable plans.

Kipp shared with TechHQ some of the best cybersecurity practices SMEs can follow to strengthen their cybersecurity systems and empower their workforce amid a rise in pandemic-induced cyberthreats.

It begins with training and educating employees with fundamental cybersecurity best practices such as spotting phishing emails to utilizing two-factor authentication (2FA) along with a strong password.

By ensuring employees are taking all the necessary steps internally to protect themselves can go a long way, especially at a time where remote working is enforced. Kipp added, businesses can take a step further by establishing a standard operating procedure, or SOP, on how documents should be handled and how potential vulnerabilities should be reported when working remotely.

Besides that, SMEs can consider utilizing a virtual private network (VPN) as it protects data by encryption. In other words, sensitive data such as SSNs, passwords, and credit card numbers are transmitted securely across shared or public networks.

Even so, Kipp emphasized that SMEs should stay vigilant and careful when sharing data, such as inputting customer information into an online form or sending an email containing sensitive data.

Kipp noted, By being careful with sensitive information, businesses can limit the risk for catastrophic data leaks if they fall victim to a hack or breach.

Alongside employing these best cybersecurity practices, businesses should adopt a more proactive mindset when in face of cyberthreats.

Kipp explained SMEs should be routinely scanning their websites for malware and vulnerabilities. By being proactive with their cybersecurity hygiene, organizations can help to ensure that their customers and their data remain safe and secure.

Read more from the original source:
Why your website may be packed with malware - TechHQ

The Role of Quantum Computing in Online Education – MarketScale

On this episode of the MarketScale Online Learning Minute, host Brian Runo dives into how quantum computing, the next revolutionary leap forward in computing, could apply to online education.

In particular, it can be used to epitomize the connectivism theory and provide personalized learning for each individual, as its not restricted by the capacity of an individual instructor.

In this way, each learner can be empowered to learn at their own pace and be presented with materials more tailored to them in real-time.

In fact, quantum computing is so revolutionary that the education world likely cant even currently dream up the innovations it will enable.

For the latest news, videos, and podcasts in theEducation Technology Industry, be sure to subscribe to our industry publication.

Follow us on social media for the latest updates in B2B!Twitter @MarketScaleFacebook facebook.com/marketscaleLinkedIn linkedin.com/company/marketscale

Follow this link:
The Role of Quantum Computing in Online Education - MarketScale

The University of New Mexico Becomes IBM Q Hub’s First University Member – HPCwire

May 28, 2020 Under the direction of Michael Devetsikiotis, chair of the Department of Electrical and Computer Engineering (ECE), The University of New Mexico recently joined the IBM Q Hubat North Carolina State University as its first university member.

The NC State IBM Q Hub is a cloud-based quantum computing hub, one of six worldwide and the first in North America to be part of the globalIBM Q Network. This global network links national laboratories, tech startups, Fortune 500 companies, and research universities, providing access to IBMs largest quantum computing systems.

Mainstream computer processors inside our laptops, desktops, and smartphones manipulatebits, information that can only exist as either a 1 or a 0. In other words, the computers we are used to function through programming, which dictates a series of commands with choices restricted to yes/no or if this, then that.Quantum computers, on the other hand, process quantum bits or qubits, that are not restricted to a binary choice. Quantum computers can choose if this, then that or both through complex physics concepts such as quantum entanglement. This allows quantum computers to process information more quickly, and in unique ways compared to conventional computers.

Access to systems such as IBMs newly announced53 qubit processor (as well as several 20 qubit machines) is just one of the many benefits to UNMs participation in the IBM Q Hub when it comes to data analysis and algorithm development for quantum hardware. Quantum knowledge will only grow with time, and the IBM Q Hub will provide unique training and research opportunities for UNM faculty and student researchers for years to come.

How did this partnership come to be? Two years ago, a sort of call to arms was sent out among UNM quantum experts, saying now was the time for big ideas because federal support for quantum research was gaining traction. Devetsikiotis vision was to create a quantum ecosystem, one that could unite the foundational quantum research in physics atUNMsCenter for Quantum Information and Control(CQuIC) with new quantum computing and engineering initiatives for solving big real-world mathematical problems.

At first, I thought [quantum] was something for physicists, explains Devetsikiotis. But I realized its a great opportunity for the ECE department to develop real engineering solutions to these real-world problems.

CQuIC is the foundation of UNMs long-standing involvement in quantum research, resulting in participation in theNational Quantum Initiative(NQI) passed by Congress in 2018 to support multidisciplinary research and training in quantum information science. UNM has been a pioneer in quantum information science since the field emerged 25 years ago, as CQuIC Director Ivan Deutsch knows first-hand.

This is a very vibrant time in our field, moving from physics to broader activities, says Deutsch, and [Devetsikiotis] has seen this as a real growth area, connecting engineering with the existing strengths we have in the CQuIC.

With strategic support from the Office of the Vice President for Research, Devetsikiotis secured National Science Foundation funding to support a Quantum Computing & Information Science (QCIS) faculty fellow. The faculty member will join the Department of Electrical and Computer Engineering with the goal to unite well-established quantum research in physics with new quantum education and research initiatives in engineering. This includes membership in CQuIC and implementation of the IBM Q Hub program, as well as a partnership with Los Alamos National Lab for a Quantum Computing Summer School to develop new curricula, educational materials, and mentorship of next-generation quantum computing and information scientists.As part of the Q Hub at NC State, UNM gains access to IBMs largest quantum computing systems for commercial use cases and fundamental research. It also allows for the restructuring of existing quantum courses to be more hands-on and interdisciplinary than they have in the past, as well as the creation of new courses, a new masters degree program in QCIS, and a new university-wide Ph.D. concentration in QCIS that can be added to several departments including ECE, Computer Science, Physics and Astronomy, and Chemistry.

Theres been a lot of challenges, Devetsikiotis says, but there has also been a lot of good timing, and thankfully The University has provided support for us. UNM has solidified our seat at the quantum table and can now bring in the industrial side.

For additional graphics and full announcement, https://news.unm.edu/news/the-university-of-new-mexico-becomes-ibm-q-hubs-first-university-member

Source: Natalie Rogers, University of New Mexico

View original post here:
The University of New Mexico Becomes IBM Q Hub's First University Member - HPCwire

What Is the Many-Worlds Theory of Quantum Mechanics? – The Wire

Photo: Kelly Sikkema/Unsplash.

Quantum physics is strange. At least, it is strange to us, because the rules of the quantum world, which govern the way the world works at the level of atoms and subatomic particles (the behaviour of light and matter, as the renowned physicist Richard Feynman put it), are not the rules that we are familiar with the rules of what we call common sense.

The quantum rules, which were mostly established by the end of the 1920s, seem to be telling us that a cat can be both alive and dead at the same time, while a particle can be in two places at once. But to the great distress of many physicists, let alone ordinary mortals, nobody (then or since) has been able to come up with a common-sense explanation of what is going on. More thoughtful physicists have sought solace in other ways, to be sure, namely coming up with a variety of more or less desperate remedies to explain what is going on in the quantum world.

These remedies, the quanta of solace, are called interpretations. At the level of the equations, none of these interpretations is better than any other, although the interpreters and their followers will each tell you that their own favored interpretation is the one true faith, and all those who follow other faiths are heretics. On the other hand, none of the interpretations is worse than any of the others, mathematically speaking. Most probably, this means that we are missing something. One day, a glorious new description of the world may be discovered that makes all the same predictions as present-day quantum theory, but also makes sense. Well, at least we can hope.

Meanwhile, I thought I might provide an agnostic overview of one of the more colorful of the hypotheses, the many-worlds, or multiple universes, theory. For overviews of the other five leading interpretations, I point you to my book, Six Impossible Things. I think youll find that all of them are crazy, compared with common sense, and some are more crazy than others. But in this world, crazy does not necessarily mean wrong, and being more crazy does not necessarily mean more wrong.

If you have heard of the Many Worlds Interpretation (MWI), the chances are you think that it was invented by the American Hugh Everett in the mid-1950s. In a way thats true. He did come up with the idea all by himself. But he was unaware that essentially the same idea had occurred to Erwin Schrdinger half a decade earlier. Everetts version is more mathematical, Schrdingers more philosophical, but the essential point is that both of them were motivated by a wish to get rid of the idea of the collapse of the wave function, and both of them succeeded.

Also read: If You Thought Quantum Mechanics Was Weird, Wait Till You Hear About Entangled Time

As Schrdinger used to point out to anyone who would listen, there is nothing in the equations (including his famous wave equation) about collapse. That was something that Bohr bolted on to the theory to explain why we only see one outcome of an experiment a dead cat or a live cat not a mixture, a superposition of states. But because we only detect one outcome one solution to the wave function that need not mean that the alternative solutions do not exist. In a paper he published in 1952, Schrdinger pointed out the ridiculousness of expecting a quantum superposition to collapse just because we look at it. It was, he wrote, patently absurd that the wave function should be controlled in two entirely different ways, at times by the wave equation, but occasionally by direct interference of the observer, not controlled by the wave equation.

Although Schrdinger himself did not apply his idea to the famous cat, it neatly resolves that puzzle. Updating his terminology, there are two parallel universes, or worlds, in one of which the cat lives, and in one of which it dies. When the box is opened in one universe, a dead cat is revealed. In the other universe, there is a live cat. But there always were two worlds that had been identical to one another until the moment when the diabolical device determined the fate of the cat(s). There is no collapse of the wave function. Schrdinger anticipated the reaction of his colleagues in a talk he gave in Dublin, where he was then based, in 1952. After stressing that when his eponymous equation seems to describe different possibilities (they are not alternatives but all really happen simultaneously), he said:

Nearly every result [the quantum theorist] pronounces is about the probability of this or that or that happening with usually a great many alternatives. The idea that they may not be alternatives but all really happen simultaneously seems lunatic to him, just impossible. He thinks that if the laws of nature took this form for, let me say, a quarter of an hour, we should find our surroundings rapidly turning into a quagmire, or sort of a featureless jelly or plasma, all contours becoming blurred, we ourselves probably becoming jelly fish. It is strange that he should believe this. For I understand he grants that unobserved nature does behave this waynamely according to the wave equation. The aforesaid alternatives come into play only when we make an observation which need, of course, not be a scientific observation. Still it would seem that, according to the quantum theorist, nature is prevented from rapid jellification only by our perceiving or observing it it is a strange decision.

In fact, nobody responded to Schrdingers idea. It was ignored and forgotten, regarded as impossible. So Everett developed his own version of the MWI entirely independently, only for it to be almost as completely ignored. But it was Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

It was Hugh Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

Everett came up with the idea in 1955, when he was a PhD student at Princeton. In the original version of his idea, developed in a draft of his thesis, which was not published at the time, he compared the situation with an amoeba that splits into two daughter cells. If amoebas had brains, each daughter would remember an identical history up until the point of splitting, then have its own personal memories. In the familiar cat analogy, we have one universe, and one cat, before the diabolical device is triggered, then two universes, each with its own cat, and so on. Everetts PhD supervisor, John Wheeler, encouraged him to develop a mathematical description of his idea for his thesis, and for a paper published in the Reviews of Modern Physics in 1957, but along the way, the amoeba analogy was dropped and did not appear in print until later. But Everett did point out that since no observer would ever be aware of the existence of the other worlds, to claim that they cannot be there because we cannot see them is no more valid than claiming that the Earth cannot be orbiting around the Sun because we cannot feel the movement.

Also read: What Is Quantum Biology?

Everett himself never promoted the idea of the MWI. Even before he completed his PhD, he had accepted the offer of a job at the Pentagon working in the Weapons Systems Evaluation Group on the application of mathematical techniques (the innocently titled game theory) to secret Cold War problems (some of his work was so secret that it is still classified) and essentially disappeared from the academic radar. It wasnt until the late 1960s that the idea gained some momentum when it was taken up and enthusiastically promoted by Bryce DeWitt, of the University of North Carolina, who wrote: every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself. This became too much for Wheeler, who backtracked from his original endorsement of the MWI, and in the 1970s, said: I have reluctantly had to give up my support of that point of view in the end because I am afraid it carries too great a load of metaphysical baggage. Ironically, just at that moment, the idea was being revived and transformed through applications in cosmology and quantum computing.

Every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself.

The power of the interpretation began to be appreciated even by people reluctant to endorse it fully. John Bell noted that persons of course multiply with the world, and those in any particular branch would experience only what happens in that branch, and grudgingly admitted that there might be something in it:

The many worlds interpretation seems to me an extravagant, and above all an extravagantly vague, hypothesis. I could almost dismiss it as silly. And yet It may have something distinctive to say in connection with the Einstein Podolsky Rosen puzzle, and it would be worthwhile, I think, to formulate some precise version of it to see if this is really so. And the existence of all possible worlds may make us more comfortable about the existence of our own world which seems to be in some ways a highly improbable one.

The precise version of the MWI came from David Deutsch, in Oxford, and in effect put Schrdingers version of the idea on a secure footing, although when he formulated his interpretation, Deutsch was unaware of Schrdingers version. Deutsch worked with DeWitt in the 1970s, and in 1977, he met Everett at a conference organized by DeWitt the only time Everett ever presented his ideas to a large audience. Convinced that the MWI was the right way to understand the quantum world, Deutsch became a pioneer in the field of quantum computing, not through any interest in computers as such, but because of his belief that the existence of a working quantum computer would prove the reality of the MWI.

This is where we get back to a version of Schrdingers idea. In the Everett version of the cat puzzle, there is a single cat up to the point where the device is triggered. Then the entire Universe splits in two. Similarly, as DeWitt pointed out, an electron in a distant galaxy confronted with a choice of two (or more) quantum paths causes the entire Universe, including ourselves, to split. In the DeutschSchrdinger version, there is an infinite variety of universes (a Multiverse) corresponding to all possible solutions to the quantum wave function. As far as the cat experiment is concerned, there are many identical universes in which identical experimenters construct identical diabolical devices. These universes are identical up to the point where the device is triggered. Then, in some universes the cat dies, in some it lives, and the subsequent histories are correspondingly different. But the parallel worlds can never communicate with one another. Or can they?

Deutsch argues that when two or more previously identical universes are forced by quantum processes to become distinct, as in the experiment with two holes, there is a temporary interference between the universes, which becomes suppressed as they evolve. It is this interaction that causes the observed results of those experiments. His dream is to see the construction of an intelligent quantum machine a computer that would monitor some quantum phenomenon involving interference going on within its brain. Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities. This is far from being a practical experiment. But Deutsch also has a much simpler proof of the existence of the Multiverse.

What makes a quantum computer qualitatively different from a conventional computer is that the switches inside it exist in a superposition of states. A conventional computer is built up from a collection of switches (units in electrical circuits) that can be either on or off, corresponding to the digits 1 or 0. This makes it possible to carry out calculations by manipulating strings of numbers in binary code. Each switch is known as a bit, and the more bits there are, the more powerful the computer is. Eight bits make a byte, and computer memory today is measured in terms of billions of bytes gigabytes, or Gb. Strictly speaking, since we are dealing in binary, a gigabyte is 230 bytes, but that is usually taken as read. Each switch in a quantum computer, however, is an entity that can be in a superposition of states. These are usually atoms, but you can think of them as being electrons that are either spin up or spin down. The difference is that in the superposition, they are both spin up and spin down at the same time 0 and 1. Each switch is called a qbit, pronounced cubit.

Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities.

Because of this quantum property, each qbit is equivalent to two bits. This doesnt look impressive at first sight, but it is. If you have three qbits, for example, they can be arranged in eight ways: 000, 001, 010, 011, 100, 101, 110, 111. The superposition embraces all these possibilities. So three qbits are not equivalent to six bits (2 x 3), but to eight bits (2 raised to the power of 3). The equivalent number of bits is always 2 raised to the power of the number of qbits. Just 10 qbits would be equivalent to 210 bits, actually 1,024, but usually referred to as a kilobit. Exponentials like this rapidly run away with themselves. A computer with just 300 qbits would be equivalent to a conventional computer with more bits than there are atoms in the observable Universe. How could such a computer carry out calculations? The question is more pressing since simple quantum computers, incorporating a few qbits, have already been constructed and shown to work as expected. They really are more powerful than conventional computers with the same number of bits.

Deutschs answer is that the calculation is carried out simultaneously on identical computers in each of the parallel universes corresponding to the superpositions. For a three-qbit computer, that means eight superpositions of computer scientists working on the same problem using identical computers to get an answer. It is no surprise that they should collaborate in this way, since the experimenters are identical, with identical reasons for tackling the same problem. That isnt too difficult to visualize. But when we build a 300-qbit machinewhich will surely happenwe will, if Deutsch is right, be involving a collaboration between more universes than there are atoms in our visible Universe. It is a matter of choice whether you think that is too great a load of metaphysical baggage. But if you do, you will need some other way to explain why quantum computers work.

Also read: The Science and Chaos of Complex Systems

Most quantum computer scientists prefer not to think about these implications. But there is one group of scientists who are used to thinking of even more than six impossible things before breakfast the cosmologists. Some of them have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

Their jumping-off point is the fact, noted by Schrdinger, that there is nothing in the equations referring to a collapse of the wave function. And they do mean thewave function; just one, which describes the entire world as a superposition of states a Multiverse made up of a superposition of universes.

Some cosmologists have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

The first version of Everetts PhD thesis (later modified and shortened on the advice of Wheeler) was actually titled The Theory of the Universal Wave Function. And by universal he meant literally that, saying:

Since the universal validity of the state function description is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the whole universe. In this sense this theory can be called the theory of the universal wave function, since all of physics is presumed to follow from this function alone.

where for the present purpose state function is another name for wave function. All of physics means everything, including us the observers in physics jargon. Cosmologists are excited by this, not because they are included in the wave function, but because this idea of a single, uncollapsed wave function is the only way in which the entire Universe can be described in quantum mechanical terms while still being compatible with the general theory of relativity. In the short version of his thesis published in 1957, Everett concluded that his formulation of quantum mechanics may therefore prove a fruitful framework for the quantization of general relativity. Although that dream has not yet been fulfilled, it has encouraged a great deal of work by cosmologists since the mid-1980s, when they latched on to the idea. But it does bring with it a lot of baggage.

The universal wave function describes the position of every particle in the Universe at a particular moment in time. But it also describes every possible location of those particles at that instant. And it also describes every possible location of every particle at any other instant of time, although the number of possibilities is restricted by the quantum graininess of space and time. Out of this myriad of possible universes, there will be many versions in which stable stars and planets, and people to live on those planets, cannot exist. But there will be at least some universes resembling our own, more or less accurately, in the way often portrayed in science fiction stories. Or, indeed, in other fiction. Deutsch has pointed out that according to the MWI, any world described in a work of fiction, provided it obeys the laws of physics, really does exist somewhere in the Multiverse. There really is, for example, a Wuthering Heights world (but not a Harry Potter world).

That isnt the end of it. The single wave function describes all possible universes at all possible times. But it doesnt say anything about changing from one state to another. Time does not flow. Sticking close to home, Everetts parameter, called a state vector, includes a description of a world in which we exist, and all the records of that worlds history, from our memories, to fossils, to light reaching us from distant galaxies, exist. There will also be another universe exactly the same except that the time step has been advanced by, say, one second (or one hour, or one year).

But there is no suggestion that any universe moves along from one time step to another. There will be a me in this second universe, described by the universal wave function, who has all the memories I have at the first instant, plus those corresponding to a further second (or hour, or year, or whatever). But it is impossible to say that these versions of me are the same person. Different time states can be ordered in terms of the events they describe, defining the difference between past and future, but they do not change from one state to another. All the states just exist. Time, in the way we are used to thinking of it, does not flow in Everetts MWI.

John Gribbin is a Visiting Fellow in Astronomy at the University of Sussex, UK and the author of In Search of Schrdingers Cat, The Universe: A Biography and Six Impossible Thingsfrom which this article is excerpted.

Thisarticlehas been republished fromThe MIT Press Reader.

Follow this link:
What Is the Many-Worlds Theory of Quantum Mechanics? - The Wire