Archive for the ‘Quantum Computing’ Category

New York University Partners with IBM to Explore Quantum Computing for Simulation of Quantum Systems and Advancing Quantum Education – Newswise

MEDIA CONTACT

Available for logged-in reporters only

New York University Partners with IBM to Explore Quantum Computing for Simulation of Quantum Systems and Advancing Quantum Education

Newswise NYU to Join the IBM Q Hub at the Air Force Research Lab

New York University will join the IBM Q Hub at the Air Force Research Lab to advance the fundamental research and use of quantum computing in simulation of quantum systems and advancing quantum education. IBM will provide NYU with access through the cloud to the worlds largest fleet of quantum computing systems for commercial use case exploration and fundamental research.

The announcement of the agreement was made during CES 2020, the annual global technology conference and showcase in Las Vegas.

Together with the Air Force Research Lab (AFRL) and IBM, NYU will explore quantum computing research to study measurement-based quantum computing, materials discovery withvariational quantum eigensolver, and emulating new phases on small quantum systems.

We are excited to join AFRL and IBM to transform quantum computing concepts into a powerful technology by educating a new quantum workforce, expanding our scientific partnership and engaging in cross disciplinary collaboration, said Javad Shabani, an assistant professor of physics at NYU.

Under the agreement to join the AFRL hub, NYU will be part of a community of Fortune 500 companies, startups, academic institutions, and research labs working to advance quantum computing and explore practical applications. NYU will leverage IBMs quantum expertise and resources, Qiskit software and developer tools, and will have cloud-based access to IBMs Quantum Computation Center. IBM offers, through the cloud, 15 of the most advanced universal quantum computing systems available, including a 53-qubit qubit systemthe largest commercially available system in the industry.

Since the IBM Q Networks launch in 2017, it has grown to more than 100 organizations, collaborating with IBM and one another to advance fundamental quantum computing research and to develop practical applications for business and science. For more information about the IBM Q Network, as well as a full list of all partners, members, and hubs, visit https://www.research.ibm.com/ibm-q/network/.

About New York University

Founded in 1831, NYU is one of the worlds foremost research universities and is a member of the selective Association of American Universities. NYU has degree-granting campuses in New York, Abu Dhabi, and Shanghai, and has 11 other global academic sites around the world. Through its numerous schools and colleges, NYU conducts research and provides education in the arts and sciences, law, medicine, business, dentistry, education, nursing, the cinematic and performing arts, music and studio arts, public administration, engineering, social work, cities, global public health, big data, and continuing and professional studies, among other areas.

http://www.nyu.edu

Twitter: @NYUniversity

About IBM Q

IBM Q is an industry-first initiative to build commercial universal quantum systems for business and science applications. For more information about IBMs quantum computing efforts, please visit http://www.ibm.com/ibmq.

IBM Q Network and IBM Q are trademarks of International Business Machines Corporation.

# # #

Visit link:
New York University Partners with IBM to Explore Quantum Computing for Simulation of Quantum Systems and Advancing Quantum Education - Newswise

Podcast: The Overhype and Underestimation of Quantum Computing – insideHPC

https://radiofreehpc.com/audio/RF-HPC_Episodes/Episode260/RFHPC260_QuantumQuantum.mp3In this podcast, the Radio Free HPC team looks at how Quantum Computing is overhyped and underestimated at the same time.

The episode starts out with Henry being cranky. It also ends with Henry being cranky. But between those two events, we discuss quantum computing and Shahins trip to the Q2B quantum computing conference in San Jose.

Not surprisingly, there is a lot of activity in quantum, with nearly every country pushing the envelop outward. One of the big concerns is that existing cryptography is now vulnerable to quantum cracking. Shahin assures us that this isnt the case today and is probably a decade away, which is another way of saying nobody knows, so it could be next week, but probably not.

We also learn the term NISQ which is a descriptive acronym for the current state of quantum systems. NISQ stands for Noisy Intermediate Scale Quantum computing. The conversation touches on various ways quantum computing is used now and where its heading, plus the main reason why everyone seems to be kicking the tires on quantum: the fear of missing out. Its a very exciting area, but to Shahin, it seems like how AI was maybe 8-10 years ago, so still early days.

Other highlights:

Download the MP3 *Follow RFHPC on Twitter *Subscribe on Spotify *Subscribe on Google Play *Subscribe on iTunes

Sign up for the insideHPC Newsletter

Visit link:
Podcast: The Overhype and Underestimation of Quantum Computing - insideHPC

At CES Today, IBM Hosts Quantum Super Session and Announces Quantum Network Tops 100 Organizations Working Toward Practical Applications for Business…

LAS VEGAS, Jan. 8, 2020 /PRNewswire/ --IBM (NYSE: IBM) will host a live panel discussion and media event with leaders from Daimler AG and ExxonMobil discussing how quantum computing will radically change the world in a CES Super Session today, January 8, from 3:00-4:00 p.m. PST. The panel will be available via livestream starting at 3:00 p.m. PST here.Watch to understand why many believe quantum is the next big thing in technology and how it promises to unlock tremendous value including the discovery of new drugs and materials, batteries that are 1000x better, efficient supply chains and new transportation systems.

Panelists:

Additionally, see an IBM quantum computer in the Las Vegas Convention Center Grand Lobby (GL-7), or download images (Credit: IBM) here.

Examples of companies working with IBM to explore quantum computing's potential include:

To learn more about IBM's presence at CES, please visit https://newsroom.ibm.com/ces.

SOURCE IBM

https://www.ibm.com

Read the original post:
At CES Today, IBM Hosts Quantum Super Session and Announces Quantum Network Tops 100 Organizations Working Toward Practical Applications for Business...

Google and IBM square off in Schrodingers catfight over quantum supremacy – The Register

Column Just before Christmas, Google claimed quantum supremacy. The company had configured a quantum computer to produce results that would take conventional computers some 10,000 years to replicate - a landmark event.

Bollocks, said IBM - which also has big investments both in quantum computing and not letting Google get away with stuff. Using Summit, the world's largest conventional supercomputer at the Oak Ridge National Laboratories in Tennessee, IBM claimed it could do the same calculation in a smidge over two days.

As befits all things quantum, the truth is a bit of both. IBM's claim is fair enough - but it's right at the edge of Summit's capability and frankly a massive waste of its time. Google could, if it wished, tweak the quantum calculation to move it out of that range. And it might: the calculation was chosen precisely not because it was easy, but because it was hard. Harder is better.

Google's quantum CPU has 54 qubits, quantum bits that can stay in a state of being simultaneously one and zero. The active device itself is remarkably tiny, a silicon chip around a centimetre square, or four times the size of the Z80 die in your childhood ZX Spectrum. On top of the silicon, a nest of aluminium tickled by microwaves hosts the actual qubits. The aluminium becomes superconducting below around 100K, but the very coldest part of the circuit is just 15 millikelvins. At this temperature the qubits have low enough noise to survive long enough to be useful

By configuring the qubits in a circuit, setting up data and analysing the patterns that emerge when the superpositions are observed and thus collapse to either one or zero, Google can determine the probable correct outcome for the problem the circuit represents. 54 qubits, if represented in conventional computer terms, would need 254 bits of RAM to represent each step of the calculation, or two petabytes' worth. Manipulating this much data many times over gives the 10 millennia figure Google claims.

IBM, on the other hand, says that it has just enough disk space on Summit to store the complete calculation. However you do it, though, it's not very useful; the only application is in random number generation. That's a fun, important and curiously nuanced field, but you don't really need a refrigerator stuffed full of qubits to get there. You certainly don't need the 27,648 NVidia Tesla GPUs in Summit chewing through 16 megawatts of power.

What Google is actually doing is known in the trade as "pulling a Steve", from the marketing antics of the late Steve Jobs. In particular, his tour at NeXT Inc, the company he started in the late 1980s to annoy Apple and produce idiosyncratic workstations. Hugely expensive to make and even more so to buy, the NeXT systems were never in danger of achieving dominance - but you wouldn't know that from Jobs' pronouncements. He declared market supremacy at every opportunity, although in carefully crafted phrases that critics joked defined the market as "black cubic workstations running NeXTOS."

Much the same is true of Google's claim. The calculation is carefully crafted to do precisely the things that Google's quantum computer can do - the important thing isn't the result, but the journey. Perhaps the best analogy is with the Wright Brothers' first flight: of no practical use, but tremendous significance.

What happened to NeXT? It got out of hardware and concentrated on software, then Jobs sold it - and himself - to Apple, and folded in some of that software into MacOS development. Oh, and some cat called Berners-Lee built something called the World Wide Web on a Next Cube.

Nothing like this will happen with Google's technology. There's no new web waiting to be borne on the wings of supercooled qubits. Even some of the more plausible things, like quantum decryption of internet traffic, is a very long way from reality - and, once it happens, it's going to be relatively trivial to tweak conventional encryption to defeat it. But the raw demonstration, that a frozen lunchbox consuming virtually no power in its core can outperform a computer chewing through enough wattage to keep a small town going, is a powerful inducement for more work.

That's Google's big achievement. So many new and promising technologies have failed not because they could never live up to expectations but because they cant survive infancy. Existing, established technology has all the advantages: it generates money, it has distribution channels, it has an army of experts behind it, and it can adjust to close down challengers before they get going. To take just one company - Intel has tried for decades to break out of the x86 CPU prison. New wireless standards, new memory technologies, new chip architectures, new display systems, new storage and security ideas - year after year, the company casts about for something new that'll make money. It never gets there.

Google's "quantum supremacy" isn't there either, but it has done enough to protect its infant prince in its superconducting crib. That's worth a bit of hype.

Continued here:
Google and IBM square off in Schrodingers catfight over quantum supremacy - The Register

Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s – The Daily Hodl

The new decade will unfurl a bag of seismic shifts, predicts the creator of Cardano and Ethereum, Charles Hoskinson. And these changes will propel cryptocurrency and blockchain solutions to the forefront as legacy systems buckle, transform or dissolve.

In an ask-me-anything session uploaded on January 3rd, the 11th birthday of Bitcoin, Hoskinson acknowledges how the popular cryptocurrency gave him an eye-opening introduction to the world of global finance, and he recounts how dramatically official attitudes and perceptions have changed.

Every central bank in the world is aware of cryptocurrencies and some are even taking positions in cryptocurrencies. Theres really never been a time in human history where one piece of technology has obtained such enormous global relevance without any central coordinated effort, any central coordinated marketing. No company controls it and the revolution is just getting started.

And he expects its emergence to coalesce with other epic changes. In a big picture reveal, Hoskinson plots some of the major events he believes will shape the new decade.

2020 Predictions

Hoskinson says the consequences of these technologies will reach every government service and that cryptocurrencies will gain an opening once another economic collapse similar to 2008 shakes the markets this decade.

I think that means its a great opening for cryptocurrencies to be ready to start taking over the global economy.

Hoskinson adds that hes happy to be alive to witness all of the changes he anticipates, including a reorganization of the media.

This is the last decade of traditional organized media, in my view. Were probably going to have less CNNs and Fox Newses and Bloombergs and Wall Street Journals and more Joe Rogans, especially as we enter the 2025s and beyond. And I think our space in particular is going to fundamentally change the incentives of journalism. And well actually move to a different way of paying for content, curating content.

Check Latest News Headlines

Featured Image: Shutterstock/Liu zishan

Read more:
Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s - The Daily Hodl