Archive for the ‘Quantum Computing’ Category

What Is the Many-Worlds Theory of Quantum Mechanics? – The Wire

Photo: Kelly Sikkema/Unsplash.

Quantum physics is strange. At least, it is strange to us, because the rules of the quantum world, which govern the way the world works at the level of atoms and subatomic particles (the behaviour of light and matter, as the renowned physicist Richard Feynman put it), are not the rules that we are familiar with the rules of what we call common sense.

The quantum rules, which were mostly established by the end of the 1920s, seem to be telling us that a cat can be both alive and dead at the same time, while a particle can be in two places at once. But to the great distress of many physicists, let alone ordinary mortals, nobody (then or since) has been able to come up with a common-sense explanation of what is going on. More thoughtful physicists have sought solace in other ways, to be sure, namely coming up with a variety of more or less desperate remedies to explain what is going on in the quantum world.

These remedies, the quanta of solace, are called interpretations. At the level of the equations, none of these interpretations is better than any other, although the interpreters and their followers will each tell you that their own favored interpretation is the one true faith, and all those who follow other faiths are heretics. On the other hand, none of the interpretations is worse than any of the others, mathematically speaking. Most probably, this means that we are missing something. One day, a glorious new description of the world may be discovered that makes all the same predictions as present-day quantum theory, but also makes sense. Well, at least we can hope.

Meanwhile, I thought I might provide an agnostic overview of one of the more colorful of the hypotheses, the many-worlds, or multiple universes, theory. For overviews of the other five leading interpretations, I point you to my book, Six Impossible Things. I think youll find that all of them are crazy, compared with common sense, and some are more crazy than others. But in this world, crazy does not necessarily mean wrong, and being more crazy does not necessarily mean more wrong.

If you have heard of the Many Worlds Interpretation (MWI), the chances are you think that it was invented by the American Hugh Everett in the mid-1950s. In a way thats true. He did come up with the idea all by himself. But he was unaware that essentially the same idea had occurred to Erwin Schrdinger half a decade earlier. Everetts version is more mathematical, Schrdingers more philosophical, but the essential point is that both of them were motivated by a wish to get rid of the idea of the collapse of the wave function, and both of them succeeded.

Also read: If You Thought Quantum Mechanics Was Weird, Wait Till You Hear About Entangled Time

As Schrdinger used to point out to anyone who would listen, there is nothing in the equations (including his famous wave equation) about collapse. That was something that Bohr bolted on to the theory to explain why we only see one outcome of an experiment a dead cat or a live cat not a mixture, a superposition of states. But because we only detect one outcome one solution to the wave function that need not mean that the alternative solutions do not exist. In a paper he published in 1952, Schrdinger pointed out the ridiculousness of expecting a quantum superposition to collapse just because we look at it. It was, he wrote, patently absurd that the wave function should be controlled in two entirely different ways, at times by the wave equation, but occasionally by direct interference of the observer, not controlled by the wave equation.

Although Schrdinger himself did not apply his idea to the famous cat, it neatly resolves that puzzle. Updating his terminology, there are two parallel universes, or worlds, in one of which the cat lives, and in one of which it dies. When the box is opened in one universe, a dead cat is revealed. In the other universe, there is a live cat. But there always were two worlds that had been identical to one another until the moment when the diabolical device determined the fate of the cat(s). There is no collapse of the wave function. Schrdinger anticipated the reaction of his colleagues in a talk he gave in Dublin, where he was then based, in 1952. After stressing that when his eponymous equation seems to describe different possibilities (they are not alternatives but all really happen simultaneously), he said:

Nearly every result [the quantum theorist] pronounces is about the probability of this or that or that happening with usually a great many alternatives. The idea that they may not be alternatives but all really happen simultaneously seems lunatic to him, just impossible. He thinks that if the laws of nature took this form for, let me say, a quarter of an hour, we should find our surroundings rapidly turning into a quagmire, or sort of a featureless jelly or plasma, all contours becoming blurred, we ourselves probably becoming jelly fish. It is strange that he should believe this. For I understand he grants that unobserved nature does behave this waynamely according to the wave equation. The aforesaid alternatives come into play only when we make an observation which need, of course, not be a scientific observation. Still it would seem that, according to the quantum theorist, nature is prevented from rapid jellification only by our perceiving or observing it it is a strange decision.

In fact, nobody responded to Schrdingers idea. It was ignored and forgotten, regarded as impossible. So Everett developed his own version of the MWI entirely independently, only for it to be almost as completely ignored. But it was Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

It was Hugh Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

Everett came up with the idea in 1955, when he was a PhD student at Princeton. In the original version of his idea, developed in a draft of his thesis, which was not published at the time, he compared the situation with an amoeba that splits into two daughter cells. If amoebas had brains, each daughter would remember an identical history up until the point of splitting, then have its own personal memories. In the familiar cat analogy, we have one universe, and one cat, before the diabolical device is triggered, then two universes, each with its own cat, and so on. Everetts PhD supervisor, John Wheeler, encouraged him to develop a mathematical description of his idea for his thesis, and for a paper published in the Reviews of Modern Physics in 1957, but along the way, the amoeba analogy was dropped and did not appear in print until later. But Everett did point out that since no observer would ever be aware of the existence of the other worlds, to claim that they cannot be there because we cannot see them is no more valid than claiming that the Earth cannot be orbiting around the Sun because we cannot feel the movement.

Also read: What Is Quantum Biology?

Everett himself never promoted the idea of the MWI. Even before he completed his PhD, he had accepted the offer of a job at the Pentagon working in the Weapons Systems Evaluation Group on the application of mathematical techniques (the innocently titled game theory) to secret Cold War problems (some of his work was so secret that it is still classified) and essentially disappeared from the academic radar. It wasnt until the late 1960s that the idea gained some momentum when it was taken up and enthusiastically promoted by Bryce DeWitt, of the University of North Carolina, who wrote: every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself. This became too much for Wheeler, who backtracked from his original endorsement of the MWI, and in the 1970s, said: I have reluctantly had to give up my support of that point of view in the end because I am afraid it carries too great a load of metaphysical baggage. Ironically, just at that moment, the idea was being revived and transformed through applications in cosmology and quantum computing.

Every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself.

The power of the interpretation began to be appreciated even by people reluctant to endorse it fully. John Bell noted that persons of course multiply with the world, and those in any particular branch would experience only what happens in that branch, and grudgingly admitted that there might be something in it:

The many worlds interpretation seems to me an extravagant, and above all an extravagantly vague, hypothesis. I could almost dismiss it as silly. And yet It may have something distinctive to say in connection with the Einstein Podolsky Rosen puzzle, and it would be worthwhile, I think, to formulate some precise version of it to see if this is really so. And the existence of all possible worlds may make us more comfortable about the existence of our own world which seems to be in some ways a highly improbable one.

The precise version of the MWI came from David Deutsch, in Oxford, and in effect put Schrdingers version of the idea on a secure footing, although when he formulated his interpretation, Deutsch was unaware of Schrdingers version. Deutsch worked with DeWitt in the 1970s, and in 1977, he met Everett at a conference organized by DeWitt the only time Everett ever presented his ideas to a large audience. Convinced that the MWI was the right way to understand the quantum world, Deutsch became a pioneer in the field of quantum computing, not through any interest in computers as such, but because of his belief that the existence of a working quantum computer would prove the reality of the MWI.

This is where we get back to a version of Schrdingers idea. In the Everett version of the cat puzzle, there is a single cat up to the point where the device is triggered. Then the entire Universe splits in two. Similarly, as DeWitt pointed out, an electron in a distant galaxy confronted with a choice of two (or more) quantum paths causes the entire Universe, including ourselves, to split. In the DeutschSchrdinger version, there is an infinite variety of universes (a Multiverse) corresponding to all possible solutions to the quantum wave function. As far as the cat experiment is concerned, there are many identical universes in which identical experimenters construct identical diabolical devices. These universes are identical up to the point where the device is triggered. Then, in some universes the cat dies, in some it lives, and the subsequent histories are correspondingly different. But the parallel worlds can never communicate with one another. Or can they?

Deutsch argues that when two or more previously identical universes are forced by quantum processes to become distinct, as in the experiment with two holes, there is a temporary interference between the universes, which becomes suppressed as they evolve. It is this interaction that causes the observed results of those experiments. His dream is to see the construction of an intelligent quantum machine a computer that would monitor some quantum phenomenon involving interference going on within its brain. Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities. This is far from being a practical experiment. But Deutsch also has a much simpler proof of the existence of the Multiverse.

What makes a quantum computer qualitatively different from a conventional computer is that the switches inside it exist in a superposition of states. A conventional computer is built up from a collection of switches (units in electrical circuits) that can be either on or off, corresponding to the digits 1 or 0. This makes it possible to carry out calculations by manipulating strings of numbers in binary code. Each switch is known as a bit, and the more bits there are, the more powerful the computer is. Eight bits make a byte, and computer memory today is measured in terms of billions of bytes gigabytes, or Gb. Strictly speaking, since we are dealing in binary, a gigabyte is 230 bytes, but that is usually taken as read. Each switch in a quantum computer, however, is an entity that can be in a superposition of states. These are usually atoms, but you can think of them as being electrons that are either spin up or spin down. The difference is that in the superposition, they are both spin up and spin down at the same time 0 and 1. Each switch is called a qbit, pronounced cubit.

Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities.

Because of this quantum property, each qbit is equivalent to two bits. This doesnt look impressive at first sight, but it is. If you have three qbits, for example, they can be arranged in eight ways: 000, 001, 010, 011, 100, 101, 110, 111. The superposition embraces all these possibilities. So three qbits are not equivalent to six bits (2 x 3), but to eight bits (2 raised to the power of 3). The equivalent number of bits is always 2 raised to the power of the number of qbits. Just 10 qbits would be equivalent to 210 bits, actually 1,024, but usually referred to as a kilobit. Exponentials like this rapidly run away with themselves. A computer with just 300 qbits would be equivalent to a conventional computer with more bits than there are atoms in the observable Universe. How could such a computer carry out calculations? The question is more pressing since simple quantum computers, incorporating a few qbits, have already been constructed and shown to work as expected. They really are more powerful than conventional computers with the same number of bits.

Deutschs answer is that the calculation is carried out simultaneously on identical computers in each of the parallel universes corresponding to the superpositions. For a three-qbit computer, that means eight superpositions of computer scientists working on the same problem using identical computers to get an answer. It is no surprise that they should collaborate in this way, since the experimenters are identical, with identical reasons for tackling the same problem. That isnt too difficult to visualize. But when we build a 300-qbit machinewhich will surely happenwe will, if Deutsch is right, be involving a collaboration between more universes than there are atoms in our visible Universe. It is a matter of choice whether you think that is too great a load of metaphysical baggage. But if you do, you will need some other way to explain why quantum computers work.

Also read: The Science and Chaos of Complex Systems

Most quantum computer scientists prefer not to think about these implications. But there is one group of scientists who are used to thinking of even more than six impossible things before breakfast the cosmologists. Some of them have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

Their jumping-off point is the fact, noted by Schrdinger, that there is nothing in the equations referring to a collapse of the wave function. And they do mean thewave function; just one, which describes the entire world as a superposition of states a Multiverse made up of a superposition of universes.

Some cosmologists have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

The first version of Everetts PhD thesis (later modified and shortened on the advice of Wheeler) was actually titled The Theory of the Universal Wave Function. And by universal he meant literally that, saying:

Since the universal validity of the state function description is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the whole universe. In this sense this theory can be called the theory of the universal wave function, since all of physics is presumed to follow from this function alone.

where for the present purpose state function is another name for wave function. All of physics means everything, including us the observers in physics jargon. Cosmologists are excited by this, not because they are included in the wave function, but because this idea of a single, uncollapsed wave function is the only way in which the entire Universe can be described in quantum mechanical terms while still being compatible with the general theory of relativity. In the short version of his thesis published in 1957, Everett concluded that his formulation of quantum mechanics may therefore prove a fruitful framework for the quantization of general relativity. Although that dream has not yet been fulfilled, it has encouraged a great deal of work by cosmologists since the mid-1980s, when they latched on to the idea. But it does bring with it a lot of baggage.

The universal wave function describes the position of every particle in the Universe at a particular moment in time. But it also describes every possible location of those particles at that instant. And it also describes every possible location of every particle at any other instant of time, although the number of possibilities is restricted by the quantum graininess of space and time. Out of this myriad of possible universes, there will be many versions in which stable stars and planets, and people to live on those planets, cannot exist. But there will be at least some universes resembling our own, more or less accurately, in the way often portrayed in science fiction stories. Or, indeed, in other fiction. Deutsch has pointed out that according to the MWI, any world described in a work of fiction, provided it obeys the laws of physics, really does exist somewhere in the Multiverse. There really is, for example, a Wuthering Heights world (but not a Harry Potter world).

That isnt the end of it. The single wave function describes all possible universes at all possible times. But it doesnt say anything about changing from one state to another. Time does not flow. Sticking close to home, Everetts parameter, called a state vector, includes a description of a world in which we exist, and all the records of that worlds history, from our memories, to fossils, to light reaching us from distant galaxies, exist. There will also be another universe exactly the same except that the time step has been advanced by, say, one second (or one hour, or one year).

But there is no suggestion that any universe moves along from one time step to another. There will be a me in this second universe, described by the universal wave function, who has all the memories I have at the first instant, plus those corresponding to a further second (or hour, or year, or whatever). But it is impossible to say that these versions of me are the same person. Different time states can be ordered in terms of the events they describe, defining the difference between past and future, but they do not change from one state to another. All the states just exist. Time, in the way we are used to thinking of it, does not flow in Everetts MWI.

John Gribbin is a Visiting Fellow in Astronomy at the University of Sussex, UK and the author of In Search of Schrdingers Cat, The Universe: A Biography and Six Impossible Thingsfrom which this article is excerpted.

Thisarticlehas been republished fromThe MIT Press Reader.

Follow this link:
What Is the Many-Worlds Theory of Quantum Mechanics? - The Wire

WISeKey is Adapting its R&D and Extended Patents Portfolio to the Post-COVID 19 Economy with Specific Focus on Post-Quantum Cryptography -…

WISeKey is Adapting its R&D and Extended Patents Portfolio to the Post-COVID 19 Economy with Specific Focus on Post-Quantum Cryptography

With more than 25% of its 2019 annual turnover invested in R&D, WISeKey is a significant and recognized contributor to digital trust in an interconnected world. The Companys recent publication and a conference presentation about post-quantum cryptography illustrates once again that innovation is at the heart of the Company.

WISeKey is involved in this NIST PQC (Post-Quantum Cryptography) program with the only objective of providing future-proof digital security solutions based on existing and new hardware architectures

Geneva, Switzerland May 28, 2020: WISeKey International Holding Ltd. (WISeKey) (SIX: WIHN, NASDAQ: WKEY), a leading global cybersecurity and IoT company, published today a technical article (https://www.wisekey.com/articles-white-papers/) discussing how to guarantee digital security and protect against hackers who will take advantage of the power of quantum information science. This research was presented (video here: https://www.wisekey.com/videos/) during the remote International Workshop on Code-Based Cryptography (CBCrypto 2020 Zagreb, Croatia May 9-10 2020).

IoT products are a major component of the 4th industrial revolution which brings together advances in computational power, semiconductors, blockchain, wireless communication, AI and data to build a vast technology infrastructure that works nearly autonomously.

According to a recent report published by Fortune Business Insights and titled Internet of Things (IoT) Market Size, Share and Industry Analysis By Platform (Device Management, Application Management, Network Management), By Software & Services (Software Solution, Services), By End-Use Industry (BFSI, Retail, Governments, Healthcare, Others) And Regional Forecast, 2019 2026., the IoT market was valued at USD 190.0 billion in 2018. It is projected to reach USD 1,102.6 billion by 2026, with a CAGR of 24.7% in the forecast period. Huge advances in manufacturing have allowed even small manufacturers to produce relatively sophisticated IoT products. This brings to the surface issues related to patents governing IoT products and communication standards governing devices.

Studies about quantum computing, namely how to use quantum mechanical phenomena to perform computation, were initiated in the early 1980s. The perspectives are endless and the future computers will get an incredible computing power when using this technology. When used by hackers, these computers will become a risk to cybersecurity: all the cryptographic algorithms used today to secure our digital world are exposed. Therefore, the US National Institute of Standards and Technology (NIST) launched in 2016 a wide campaign to find new resistant algorithms.

WISeKeys R&D department is very much involved in this NIST PQC (Post-Quantum Cryptography) program with the only objective to provide the market with future-proof digital security solutions based on existing and new hardware architectures. The new article reports one of the Companys current contributions to this safer cyber future. ROLLO-I, a NIST shortlisted algorithm, was implemented on some of WISeKeys secure chips (MS600x secure microcontrollers, VaultIC secure elements, ) with countermeasures to make them robust against attacks.

Although nobody exactly knows when quantum computers are going to be massively available, this is certainly going to happen. WISeKey is significantly investing to develop new technologies and win this race.

With a rich portfolio of more than 100 fundamental individual patents and 20 pending ones in various domains including the design of secure chips, Near Field Communication (NFC), the development of security firmware and backend software, the secure management of data, the improvement of security protocols between connected objects and advanced cryptography, to mention a few, WISeKey has become a key technology provider in the cybersecurity arena, says Carlos Moreira, Founder and CEO of WISeKey. This precious asset makes WISeKey the right Digital Trust Partner to deploy the current and future Internet of Everything.

Want to know more about WISeKeys Intellectual Properties? Please visit our website: https://www.wisekey.com/patents/.

About WISeKey

WISeKey (NASDAQ: WKEY; SIX Swiss Exchange: WIHN) is a leading global cybersecurity company currently deploying large scale digital identity ecosystems for people and objects using Blockchain, AI and IoT respecting the Human as the Fulcrum of the Internet. WISeKey microprocessors secure the pervasive computing shaping todays Internet of Everything. WISeKey IoT has an install base of over 1.5 billion microchips in virtually all IoT sectors (connected cars, smart cities, drones, agricultural sensors, anti-counterfeiting, smart lighting, servers, computers, mobile phones, crypto tokens etc.). WISeKey is uniquely positioned to be at the edge of IoT as our semiconductors produce a huge amount of Big Data that, when analyzed with Artificial Intelligence (AI), can help industrial applications to predict the failure of their equipment before it happens.

Our technology is Trusted by the OISTE/WISeKeys Swiss based cryptographic Root of Trust (RoT) provides secure authentication and identification, in both physical and virtual environments, for the Internet of Things, Blockchain and Artificial Intelligence. The WISeKey RoT serves as a common trust anchor to ensure the integrity of online transactions among objects and between objects and people. For more information, visitwww.wisekey.com.

Press and investor contacts:

Disclaimer:This communication expressly or implicitly contains certain forward-looking statements concerning WISeKey International Holding Ltd and its business. Such statements involve certain known and unknown risks, uncertainties and other factors, which could cause the actual results, financial condition, performance or achievements of WISeKey International Holding Ltd to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. WISeKey International Holding Ltd is providing this communication as of this date and does not undertake to update any forward-looking statements contained herein as a result of new information, future events or otherwise.This press release does not constitute an offer to sell, or a solicitation of an offer to buy, any securities, and it does not constitute an offering prospectus within the meaning of article 652a or article 1156 of the Swiss Code of Obligations or a listing prospectus within the meaning of the listing rules of the SIX Swiss Exchange. Investors must rely on their own evaluation of WISeKey and its securities, including the merits and risks involved. Nothing contained herein is, or shall be relied on as, a promise or representation as to the future performance of WISeKey.

View original post here:
WISeKey is Adapting its R&D and Extended Patents Portfolio to the Post-COVID 19 Economy with Specific Focus on Post-Quantum Cryptography -...

IIT Mumbai alumnus Rajiv Joshi, an IBM scientist, bags inventor of the year award – Livemint

Indian-American inventor Rajiv Joshi has bagged the prestigious Inventor of the Year award in recognition of his pioneering work in advancing the electronic industry and improving artificial intelligence capabilities.

Dr Joshi has more than 250 patented inventions in the US and works at the IBM Thomson Watson Research Center in New York.

He was presented with the prestigious annual award by the New York Intellectual Property Law Association early this month during a virtual awards ceremony.

An IIT Mumbai alumnus, Joshi has an MS degree from the Massachusetts Institute of Technology (MIT) and a PhD in mechanical/electrical engineering from Columbia University, New York.

His inventions span from novel interconnect structures and processes for more scaling, machine learning techniques for predictive failure analytics, high bandwidth, high performance and low power integrated circuits and memories and their usage in hardware accelerators, meant for artificial intelligence applications.

Many of these structures exist in processors, supercomputers, laptops, smartphones, handheld and variable gadgets and many other electronic items. His innovations have helped advance day-to-day life, global communication, health sciences and medical fields.

Necessity and curiosity inspire me," Dr Joshi told PTI in a recent interview, adding that the identification of a problem and providing out of the box solution as well as observe and think help him immensely to generate ideas.

Joshi claimed that stories about great, renowned inventors like Guglielmo Marconi, Madame Curie, Wright Brothers, James Watt, Alexander Bell, Thomas Edison inspired him.

In his acceptance speech, Dr Joshi said that cloud, artificial intelligence and quantum computing not only remain the buzzwords, but their utility, widespread usage is advancing with leaps and bounds.

All these areas are very exciting and I have been dabbling further in Artificial Intelligence (AI) and quantum computing," he said.

Quantum computing, which has offered tremendous opportunities, also faces challenges, he noted, adding that he is involved in advancing technology, improving memory structures and solutions and their usage in AI and contributing to quantum computing to advance the science. (With Agency Inputs)

Subscribe to newsletters

* Enter a valid email

* Thank you for subscribing to our newsletter.

The rest is here:
IIT Mumbai alumnus Rajiv Joshi, an IBM scientist, bags inventor of the year award - Livemint

Russian Scientist Gets Award For Breakthrough Research In The Development Of Quantum Computers – Modern Ghana

St. Petersburg State University professor Alexey Kavokin has received the international Quantum Devices Award in recognition of his breakthrough research in the development of quantum computers. Professor Kavokin is the first Russian scientist to be awarded this honorary distinction.

Aleksey Kavokins scientific effort has contributed to the creation of polariton lasers that consume several times less energy compared to the conventional semiconductor lasers. And most importantly, polariton lasers can eventually set the stage for the development of qubits, basic elements of quantum computers of the future. These technologies contribute significantly to the development of quantum computing systems.

The Russian scientists success stems from the fact that the Russian Federation is presently a world leader in polaritonics, a field of science that deals with light-material quasiparticles, or liquid light.

Polaritonics is the electronics of the future, Alexey Kavokin says. Developed on the basis of liquid light, polariton lasers can put our country ahead of the whole world in the quantum technologies race. Replacing the electric current with light in computer processors alone can save billions of dollars by reducing heat loss during information transfer.

This talented physicist believes that the US giants, such as Google and IBM are investing heavily in quantum technologies based on superconductors, Russian scientists are pursuing a much cheaper and potentially more promising path to developing a polariton platform for quantum computing.

Alexey Kavokin heads the Igor Uraltsev Spin Optics Laboratory at St. Petersburg State University, funded by a mega-grant provided by the Russian government. He is also head of the Quantum Polaritonics group at the Russian Quantum Center. Alexey Kavokin is Professor at the University of Southampton (England), where he heads the Department of Nanophysics and Photonics. He is Scientific Director of the Mediterranean Institute of Fundamental Physics (Italy). In 2018, he headed the International Center for Polaritonics at Westlake University in Hangzhou, China.

The Quantum Devices Award was founded in 2000 for innovative contribution to the field of complex semiconductor devices and devices with quantum nanostructures. It is funded by the Japanese section of the steering committee of the International Symposium on Compound Semiconductors (ISCS). The Quantum Devices Award was previously conferred on scientists from Japan, Switzerland, Germany, and other countries, but it is the first time that the award has been received by a scientist from Russia.

Due to the coronavirus pandemic, it was decided that the award presentation will be held next year in Sweden.

Read the original post:
Russian Scientist Gets Award For Breakthrough Research In The Development Of Quantum Computers - Modern Ghana

Tencent to Invest $70 Billion in ‘New Infrastructure’ Supporting AI and Cloud Computing – Caixin Global

Tencent to Invest $70 Billion in New Infrastructure Supporting AI and Cloud Computing

Chinese tech giant Tencent plans to invest 500 billion yuan ($70 billion) in digital infrastructure over the next five years in response to a government call to energize the worlds second-largest economy with investment in new infrastructure.

New infrastructure is broadly defined as infrastructure that supports technology and science based projects.

The massive investment by Tencent will focus on areas ranging from cloud computing, artificial intelligence (AI), blockchain and Internet of Things (IoT) to 5G networks, quantum computing and supercomputer centers, according to a company statement published Tuesday.

Tencent did not provide further details about the investment plan, but underscored the progress it has made in boosting its cloud computing capabilities. The company has built a network of data centers housing more than 1 million servers, the statement said.

In the fourth quarter of 2019, Tencent controlled 18% of Chinas cloud infrastructure service market, far behind market leader Alibaba, which grabbed 46.4%. Alibaba has announced plans to spend $28 billion on its cloud infrastructure over the next three years in a bid to help businesses embrace digitalization.

Tencent will also deepen partnerships with scientific research experts, laboratories and top universities to cultivate talents, tackle scientific problems and formulate industry standards, the statement added.

Tencents announcement comes days after Chinese premier Li Keqiang highlighted the role of new infrastructure in Chinas push to accelerate the tech-driven structural upgrade of its economy in his government work report delivered to the National Peoples Congress (NPC), the countrys top legislature.

Last month, Chinas National Development and Reform Commission (NDRC), the countrys top economic planner, divided new infrastructure into three areas: information-based infrastructure such as 5G and IoT; converged infrastructure supported by the application of the internet, big data and AI; and innovative infrastructure that supports scientific research, technology development and product development.

Contact reporter Ding Yi (yiding@caixin.com)

Related: Alibaba Now Controls Nearly Half of Chinas Cloud Service Market, Research Says

See the rest here:
Tencent to Invest $70 Billion in 'New Infrastructure' Supporting AI and Cloud Computing - Caixin Global