Archive for the ‘Quantum Computing’ Category

Breaking the Cold Barrier: The Cutting-Edge of Quantum Entanglement – SciTechDaily

Two groundbreaking studies have developed a method for controlling quantum entanglement in molecules, specifically calcium fluoride (CaF), using an optical tweezer array to create highly entangled Bell states. This advancement opens new avenues in quantum computing and sensing technologies.

Advancements in quantum entanglement with calcium fluoride molecules pave the way for new developments in quantum computing and sensing, utilizing controlled Bell state creation.

Quantum entanglement with molecules has long been a complex challenge in quantum science. However, recent advancements have emerged from two new studies. These studies showcase a method to tailor the quantum states of individual molecules, achieving quantum entanglement on demand. This development offers a promising platform for advancing quantum technologies, including computation and sensing. Quantum entanglement, a fundamental aspect of quantum mechanics, is vital for various quantum applications.

Ultracold molecules, with their intricate internal structure and long-lived rotational states, are ideal candidates for qubits in quantum computing and quantum simulations. Despite success in creating entanglement in atomic, photonic, and superconducting systems, achieving controlled entanglement between molecules has been a challenge. Now, Yicheng Bao and colleagues, along with Conner Holland and colleagues, have developed a method for the controlled quantum entanglement of calcium fluoride (CaF) molecules.

These studies utilized the long-range dipolar interaction between laser-cooled CaF molecules in a reconfigurable optical tweezer array. They successfully demonstrated the creation of a Bell state, a key class of entangled quantum state characterized by maximum entanglement between two qubits. The Bell state is crucial for many quantum technologies.

Both studies show that two CaF molecules located in neighboring optical tweezers and placed close enough to sense their respective long-range electric dipolar interaction led to an interaction between tweezer pairs, which dynamically created a Bell state out of the two previously uncorrelated molecules.

The demonstrated manipulation and characterization of entanglement of individually tailored molecules by Baoet al.and Hollandet al.paves the way for developing new versatile platforms for quantum technologies, writes Augusto Smerzi in a related Perspective.

References:

Dipolar spin-exchange and entanglement between molecules in an optical tweezer array by Yicheng Bao, Scarlett S. Yu, Loc Anderegg, Eunmi Chae, Wolfgang Ketterle, Kang-Kuen Ni and John M. Doyle, 7 December 2023, Science. DOI: 10.1126/science.adf8999

Entanglement with tweezed molecules by Augusto Smerzi, 7 December 2023, Science. DOI: 10.1126/science.adl4179

See the article here:
Breaking the Cold Barrier: The Cutting-Edge of Quantum Entanglement - SciTechDaily

What Happens When Quantum Computers Run Generative AI: A Look into the Future – Medium

Introduction

Understanding Quantum Computing and Generative AI: The Basics Quantum computing represents a significant leap from traditional computing, harnessing the peculiar properties of quantum mechanics to process information in ways previously unimaginable. It operates on qubits, which, unlike classical bits, can be in multiple states simultaneously, enabling unprecedented processing speeds and capabilities.

Generative AI, on the other hand, refers to artificial intelligence algorithms capable of creating content, from art and music to text and simulations. It learns from vast datasets, identifying patterns, and generating new, original outputs that can mimic or even surpass human creativity.

When these two technological giants converge, the potential for innovation and progress is boundless. This synergy promises to catapult AIs capabilities into a realm where it can solve complex problems faster, generate more sophisticated and nuanced outputs, and unlock mysteries across various fields, from science to arts. But with great power comes great responsibility, and this union also raises important ethical and security concerns that must be addressed.

The Fusion of Quantum Computing and Generative AI

Synergy of Quantum Mechanics and Artificial Intelligence

The fusion of quantum computing and generative AI represents a paradigm shift in technology. Quantum mechanics, with its principles of superposition and entanglement, allows quantum computers to perform complex calculations at speeds unattainable by classical computers. This capability, when harnessed by AI, particularly generative models, unlocks new potentials. Algorithms that once took days to process can now be executed in mere moments, paving the way for more advanced, efficient, and accurate AI models. This synergy is not just about speed; its about enabling AI to tackle problems once thought unsolvable, opening doors to new discoveries and innovations.

Potential and Limitations: A Balanced View

While the potential of quantum-enhanced AI is enormous, its crucial to understand its limitations. Quantum computing is still in its infancy, with many technical challenges to overcome. Issues like qubit stability and error correction are significant hurdles. Similarly, AI, especially in its generative forms, faces challenges in bias, unpredictability, and ethical considerations. Its essential to approach this fusion with a balanced perspective, acknowledging both the incredible opportunities it offers and the hurdles that lie ahead.

Deep Dive into Quantum-Enhanced Generative AI

Revolutionizing Data Analysis and Processing

Quantum computings ability to process and analyze data at an unprecedented scale is a game-changer for generative AI. This technology can sift through colossal datasets, uncovering patterns and insights far beyond the reach of classical computers. For generative AI, this means more refined, accurate, and diverse outputs. The implications of this are vast, from developing more effective healthcare treatments to understanding complex environmental systems.

Quantum AI in Creative Industries

The impact of quantum-enhanced generative AI in the creative industries is particularly exciting. Imagine AI that can compose music, create art, or write stories with a depth and nuance that rivals human creativity. This isnt just about replicating existing styles; its about generating entirely new forms of art, pushing the boundaries of creativity. However, this also raises questions about the nature of creativity and the role of AI in artistic expression.

Impact on Scientific Research and Discovery

Quantum AIs contribution to scientific research and discovery is potentially transformative. In fields like drug discovery, it can analyze vast molecular structures and simulate interactions, speeding up the development of new medications. In space exploration, it can process vast amounts of astronomical data, helping us understand our universe in more detail than ever before.

Quantum AI in Business and Economy

Transforming Business Strategies and Economic Models

The integration of quantum computing with generative AI has the potential to revolutionize business strategies and economic models. This fusion enables businesses to analyze market trends and consumer behavior with unprecedented accuracy and speed. Predictive analytics becomes far more powerful, allowing companies to anticipate market changes and adapt swiftly. In finance, quantum AI can optimize portfolios, manage risks, and detect fraud more efficiently than ever before. This technological leap could lead to more dynamic, responsive, and efficient economic systems, though it also necessitates new approaches to data security and ethical business practices.

Ethical Considerations and Societal Impact As quantum AI begins to permeate various sectors, its ethical implications and societal impact become increasingly important. One of the primary concerns is data privacy and security. Quantum computing could potentially break traditional encryption methods, raising questions about data protection. Additionally, there are concerns about job displacement and the widening of the digital divide. Its crucial to address these issues proactively, ensuring that the benefits of quantum AI are accessible and equitable.

Quantum AI Applications and Case Studies

Real-World Applications of Quantum AI

Examining real-world applications of quantum AI provides concrete insights into its potential. Industries like healthcare, where quantum AI is used for drug discovery and personalized medicine, demonstrate its life-changing capabilities. In environmental science, its used for climate modeling and understanding ecological systems, offering new ways to tackle global challenges.

Challenges and Solutions in Quantum AI Deployment

Despite its potential, deploying quantum AI comes with significant challenges. Technical issues like qubit stability and error rates in quantum computers are ongoing concerns. There are also logistical and infrastructural challenges in integrating quantum computing with existing AI systems. However, continuous research and development are leading to innovative solutions, pushing the boundaries of whats possible in this field.

The Future of Quantum AI

Predicting the Future: Trends and Possibilities

The future of quantum AI is one of the most exciting aspects to consider. As research progresses, we can expect quantum computers to become more stable and powerful, which will, in turn, make AI even more capable. This could lead to breakthroughs in fields like material science, where quantum AI could be used to design new materials with specific properties, or in AI ethics, where it could help create more equitable and unbiased AI systems.

Quantum AI and the Evolution of Technology

The evolution of quantum AI will likely go hand-in-hand with other technological advancements. As quantum computing becomes more mainstream, it will interact with emerging technologies like 5G, the Internet of Things (IoT), and edge computing, creating a more interconnected and intelligent digital landscape. This convergence has the potential to not only enhance existing technologies but also give birth to entirely new ones, reshaping our world in the process.

FAQs

Frequently Asked Questions About Quantum AI

Conclusion

Final Thoughts: Embracing the Quantum AI Era

As we stand on the brink of a new era in technology, the fusion of quantum computing and generative AI presents both thrilling opportunities and significant challenges. This technology holds the promise of transforming every aspect of our lives, from the way we work and create to how we solve some of the worlds most pressing problems. While there are hurdles to overcome, particularly in terms of ethics, security, and accessibility, the potential benefits are too great to ignore. As we continue to explore and harness the power of quantum AI, we must do so with a sense of responsibility and a commitment to creating a better, more equitable world.

Read more here:
What Happens When Quantum Computers Run Generative AI: A Look into the Future - Medium

Beyond Binary: The Convergence of Quantum Computing, DNA Data Storage, and AI – Medium

Exploring the convergence of quantum computing, DNA data storage, and AI how these technologies could revolutionize computing power, memory, and information handling if challenges around implementation and ethics are overcome.

Check out these two books for a deeper dive and to stay ahead of the curve.

Computing technology has advanced in leaps and bounds since the early days of Charles Babbages Analytical Engine in the 1800s. The creation of the first programmable computer in the 1940s ushered in a digital revolution that has profoundly impacted communication, commerce, and scientific research. But the binary logic that underlies modern computing is nearing its limits. Exploring new frontiers in processing power, data storage, and information handling will enable us to tackle increasingly complex challenges.

The basic unit of binary computing is the bit either a 0 or 1. These bits can be manipulated using simple logic gates like AND, OR, and NOT. Combined together, these gates can perform any logical or mathematical operation. This binary code underpins everything from representing the notes in a musical composition to the pixels in a digital photograph. However, maintaining and expanding todays vast computational infrastructure requires massive amounts of energy and resources. And binary systems struggle to efficiently solve exponentially complex problems like modeling protein folding.

In the quest to surpass the boundaries of binary computing, quantum computing emerges as a groundbreaking solution. It leverages the enigmatic and powerful principles of quantum mechanics, fundamentally different from the classical world we experience daily.

Quantum Mechanics: The Core of Quantum Computing

Quantum computing is rooted in quantum mechanics, the physics of the very small. At this scale, particles like electrons and photons behave in ways that can seem almost magical. Two key properties leveraged in quantum computing are superposition and entanglement.

Superposition allows a quantum bit, or qubit, to exist in multiple states (0 and 1) simultaneously, unlike a binary bit which is either 0 or 1. This means a quantum computer can process a vast array of possibilities at once.

Entanglement is a phenomenon where qubits become interlinked in such a way that the state of one (whether its a 0, a 1, or both) can depend on the state of another, regardless of the distance between them. This allows for incredibly fast information processing and transfer.

Exponential Growth in Processing Power

A quantum computer with multiple qubits can perform many calculations at once. For example, 50 qubits can simultaneously exist in over a quadrillion possible states. This exponential growth in processing power could tackle problems that are currently unsolvable by conventional computers, such as simulating large molecules for drug discovery or optimizing complex systems like large-scale logistics.

Revolutionizing Fields: Cryptography and Beyond

Quantum computing holds the potential to revolutionize numerous fields. In cryptography, it could render current encryption methods obsolete, as algorithms like Shors could theoretically break them in mere seconds. This presents both a risk and an opportunity, prompting a new era of quantum-safe cryptography.

Beyond cryptography, quantum computing could advance materials science by accurately simulating molecular structures, aid in climate modeling by analyzing vast environmental data sets, and revolutionize financial modeling through complex optimization.

Key Quantum Algorithms

Research in quantum computing has already produced notable algorithms. Shors algorithm, for instance, can factor large numbers incredibly fast, a task thats time-consuming for classical computers. Grovers algorithm, on the other hand, can rapidly search unsorted databases, demonstrating a quadratic speedup over traditional methods.

The Road Ahead: Challenges and Promises

Despite its potential, quantum computing is still in its infancy. One of the major challenges is maintaining the stability of qubits. Known as quantum decoherence, this instability currently limits the practical use of quantum computers. Keeping qubits stable requires extremely low temperatures and isolated environments.

Additionally, error rates in quantum computations are higher than in classical computations. Quantum error correction, a field of study in its own right, is crucial for reliable quantum computing.

Quantum computing, though still in the developmental stage, stands at the forefront of a computational revolution. It promises to solve complex problems far beyond the reach of traditional computers, potentially reshaping entire industries and aspects of our daily lives. As research and technology advance, we may soon witness the unlocking of quantum computings full potential, heralding a new era of innovation and discovery.

DNA data storage emerges as a paradigm shift, harnessing the building blocks of life to revolutionize how we store information.

Unprecedented Storage Capabilities

DNAs storage density is unparalleled: one gram can store up to 215 petabytes of data. In contrast, traditional flash memory can hold only about 128 gigabytes per gram. This immense capacity could fundamentally change how we manage the worlds exponentially growing data.

Longevity and Reliability

DNA is not only dense but also incredibly durable. It can last thousands of years, far outstripping the lifespan of magnetic tapes and hard drives. Its natural error correction mechanisms, rooted in the double helix structure, ensure data integrity over millennia.

DNA for Computation and Beyond

Beyond storage, DNA holds potential for computation. Researchers are exploring DNA computing, where biological processes manipulate DNA strands to perform calculations. This could lead to breakthroughs in solving complex problems that are infeasible for conventional computers.

Challenges in Practical Implementation

Despite its promise, DNA data storage is not without challenges. Synthesizing and sequencing DNA is currently expensive and time-consuming. Researchers are working on methods to streamline these processes and reduce error rates, which are crucial for making DNA a practical medium for everyday data storage.

While quantum computing offers exponential speedups on specialized problems, its broader applicability and scalability remain uncertain. And both quantum and DNA computing currently require extremely low operating temperatures only possible with expensive equipment. They also consume large amounts of energy, though less than traditional data centers. However, both offer inherent data security advantages. Quantum computations cannot be copied, while DNA data storage is dense and hard to access. We may see hybrid deployments that apply these technologies to niche applications. For generalized workloads, traditional binary computing will likely dominate for the foreseeable future.

The integration of AI with quantum computing and DNA data storage represents a leap forward in computational capability.

AI and Quantum Computing: A Synergy for Complex Problems

AI algorithms can leverage the immense processing power of quantum computers to analyze large datasets more efficiently than ever before. This synergy could lead to breakthroughs in fields like drug discovery, where AI can analyze quantum-computed molecular simulations.

AI and DNA Data Storage: Managing Massive Databases

With DNAs vast storage capacity, AI becomes essential in managing and interpreting this wealth of information. AI algorithms can be designed to efficiently encode and decode DNA-stored data, making it accessible for practical use.

Ethical and Societal Implications

As highlighted in The Coming Wave by Mustafa Suleyman, the intersection of these technologies raises significant ethical questions. The use of genetic data in AI models, for instance, necessitates stringent privacy protections and considerations of genetic discrimination.

Looking Ahead: AI as the Conductor

The future sees AI not just as a tool but as a conductor, orchestrating the interplay between quantum computing and DNA data storage. This involves developing new algorithms tailored to the unique properties of quantum and DNA-based systems.

Google AI recently demonstrated a program that can autonomously detect and correct errors on a quantum processor, a major milestone. On the DNA computing front, researchers successfully stored a movie file and 100 books using DNA sequences. Ongoing studies also show promise in using DNA to manufacture nanoscale electronics for faster, denser computing. Quantum computing is enabling models of complex chemical reactions and biological processes. As costs decline, we could see exponential growth in synthesizing custom DNA and practical quantum computers.

Despite promising strides, there are still obstacles to realizing commercially viable DNA and quantum computing. Stability of quantum bits remains limited to milliseconds, far too short for practical applications. And while DNA sequencing costs have dropped, synthesis and assembly costs remain prohibitively high. There are also ethical pitfalls if without careful oversight, like insurers obtaining genetic data, or AI algorithms exhibiting biases. Job losses due to increasing automation present another societal challenge. Investments in retraining and social programs will be necessary to ensure shared prosperity.

Hybridized quantum-DNA computing could transform our relationship with information and usher in an era of highly personalized medicine and hyper-accurate simulations. It may even require overhauling information theory and rethinking how humans interact with advanced AI. But we must thoughtfully navigate disruptions to industries like finance and cryptography. Avoiding misuse will also require international cooperation to enact governance frameworks and design systems mindful of ethical dilemmas. With wise stewardship, hybrid computing could positively benefit humanity.

The convergence of quantum computing, DNA data storage, and AI represents an unprecedented phase change for processing power, memory, and information handling. To fully realize the potential, while mitigating risks, we must aggressively fund research and development at the intersection of these fields. The technical hurdles are surmountable through collaboration between the public and private sectors. But establishing governance and ethical frameworks ultimately requires a broad, multidisciplinary approach. If society rises to meet this challenge, we could enter an age of scientific wonders beyond our current imagination.

Check out these two books for a deeper dive:

See the original post here:
Beyond Binary: The Convergence of Quantum Computing, DNA Data Storage, and AI - Medium

Rigetti Announces Public Availability of Ankaa-2 System with a 2.5 x Performance Improvement Compared to Previous … – GlobeNewswire

The Companys 84-qubit Ankaa-2 system is now publicly available to all of its customers via Rigetti Quantum Cloud Services (QCS). The Ankaa-2 system has achieved a 98% median 2-qubit fidelity, a 2.5x performance improvement compared to the Companys previous QPUs.

BERKELEY, Calif., Jan. 04, 2024 (GLOBE NEWSWIRE) -- Rigetti Computing, Inc. (Nasdaq: RGTI) (Rigetti or the Company), a pioneer in full-stack quantum-classical computing, announced today that its 84-qubit Ankaa-2 quantum system was made publicly available to all of its customers via Rigettis Quantum Cloud Services (QCS) on December 20, 2023. The Ankaa-2 system is based on Rigettis fourth generation chip architecture that features tunable couplers and a square lattice, enabling high fidelity 2-qubit operations compared to the Companys previous systems. Ankaa-2 is also the Companys highest qubit count quantum processing unit (QPU) available to the public.

Following the internal deployment of Ankaa-1, the Company made iterative improvements through internal R&D to support enhancements to Ankaa-2. As a result, Ankaa-2 achieved a 2% median 2-qubit gate error rate less than half the error rate of the Companys previous systems. These fidelity improvements can be attributed to a variety of technology updates to the Ankaa-2 system:

Rigettis focus on improving our median 2-qubit fidelities is a crucial part of our mission to build the worlds most powerful computers. Useful quantum computers will need not only a large number of qubits, but also high quality qubits. Reaching 98% fidelity on the Ankaa-2 system is the result of years of innovation and commitment from our teams across the technology stack. Now that the Ankaa-2 system is available to all of our customers and partners, I look forward to focusing on continued progress in accelerating this transformational technology, says Dr. Subodh Kulkarni, Rigetti CEO.

I am thrilled with the progress we are making with our Ankaa-class architecture against our QPU roadmap and qubit performance. To reach quantum advantage we know we need high performance qubits, and a lot of them. Weve already designed and deployed a modular architecture, tiling multiple chips together demonstrating what we believe is the way forward towards building larger systems. We believe a densely connected square lattice with tunable couplers that allows us to control qubit interactions is the foundation for driving qubit performance. A 2.5x increase in error performance against our previous QPUs, increasing our fidelities by 3%, coupled with our scaling approach, shows us that we have a promising strategy for building increasingly higher performing QPUs to help our customers solve their most pressing problems, says David Rivas, Rigetti CTO.

The public launch of the Ankaa-2 system follows the release of the Novera QPU, Rigetts first commercially available QPU, which is based on the same Ankaa-class architecture and designed for hands-on access to state-of-the-art quantum hardware for foundational quantum computing R&D.

About Rigetti Rigetti is a pioneer in full-stack quantum computing. The Company has operated quantum computers over the cloud since 2017 and serves global enterprise, government, and research clients through its Rigetti Quantum Cloud Services platform. The Companys proprietary quantum-classical infrastructure provides high performance integration with public and private clouds for practical quantum computing. Rigetti has developed the industrys first multi-chip quantum processor for scalable quantum computing systems. The Company designs and manufactures its chips in-house at Fab-1, the industrys first dedicated and integrated quantum device manufacturing facility. Learn more at rigetti.com.

Media Contact press@rigetti.com

Cautionary Language Concerning Forward-Looking Statements Certain statements in this communication may be considered forward-looking statements within the meaning of the federal securities laws, including but not limited to, expectations with respect to the Companys business and operations, including its expectations with respect to the success and performance, including future performance improvements, of the Ankaa-2 system, its ability to improve performance on future systems, future sales or leases of the Novera QPU, customer adoption of the Ankaa-2 system and Novera QPU and ongoing use and research by customers of the Ankaa-2 system and Novera QPU. Forward-looking statements generally relate to future events and can be identified by terminology such as commit, may, should, could, might, plan, possible, intend, strive, expect, intend, will, estimate, believe, predict, potential, pursue, aim, goal, outlook, anticipate, assume, or continue, or the negatives of these terms or variations of them or similar terminology. Such forward-looking statements are subject to risks, uncertainties, and other factors which could cause actual results to differ materially from those expressed or implied by such forward-looking statements. These forward-looking statements are based upon estimates and assumptions that, while considered reasonable by Rigetti and its management, are inherently uncertain. Factors that may cause actual results to differ materially from current expectations include, but are not limited to: Rigettis ability to achieve milestones, technological advancements, including with respect to its roadmap, help unlock quantum computing, and develop practical applications; the ability of Rigetti to complete ongoing negotiations with government contractors successfully and in a timely manner; the potential of quantum computing; the ability of Rigetti to obtain government contracts and the availability of government funding; the ability of Rigetti to expand its QCS business; the success of Rigettis partnerships and collaborations; Rigettis ability to accelerate its development of multiple generations of quantum processors; the outcome of any legal proceedings that may be instituted against Rigetti or others; the ability to continue to meet stock exchange listing standards; costs related to operating as a public company; changes in applicable laws or regulations; the possibility that Rigetti may be adversely affected by other economic, business, or competitive factors; Rigettis estimates of expenses and profitability; the evolution of the markets in which Rigetti competes; the ability of Rigetti to execute on its technology roadmap; the ability of Rigetti to implement its strategic initiatives, expansion plans and continue to innovate its existing services; disruptions in banking systems, increased costs, international trade relations, political turmoil, natural catastrophes, warfare (such as the ongoing military conflict between Russia and Ukraine and related sanctions and the state of war between Israel and Hamas and related threat of a larger regional conflict), and terrorist attacks; and other risks and uncertainties set forth in the section entitled Risk Factors and Cautionary Note Regarding Forward-Looking Statements in the Companys Annual Report on Form 10-K for the year ended December 31, 2022 and Quarterly Reports on Form 10-Q for the quarters ended March 31, 2023, June 30, 2023, and September 30, 2023, and other documents filed by the Company from time to time with the SEC. These filings identify and address other important risks and uncertainties that could cause actual events and results to differ materially from those contained in the forward-looking statements. Forward-looking statements speak only as of the date they are made. Readers are cautioned not to put undue reliance on forward-looking statements, and the Company assumes no obligation and does not intend to update or revise these forward-looking statements other than as required by applicable law. The Company does not give any assurance that it will achieve its expectations.

Read the rest here:
Rigetti Announces Public Availability of Ankaa-2 System with a 2.5 x Performance Improvement Compared to Previous ... - GlobeNewswire

Quantum Leap: Princeton Physicists Successfully Entangle Individual Molecules for the First Time – SciTechDaily

A team of Princeton physicists has achieved a breakthrough in quantum mechanics by entangling individual molecules. This research opens up new possibilities for quantum computing, simulation, and sensing. The teams innovative use of optical tweezers to control molecules overcomes previous challenges in quantum entanglement, signaling a significant advancement in the field. Credit: SciTechDaily.com

In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement.

For the first time, a team of Princeton physicists has been able to link together individual molecules into special states that are quantum mechanically entangled. In these bizarre states, the molecules remain correlated with each otherand can interact simultaneouslyeven if they are miles apart, or indeed, even if they occupy opposite ends of the universe. This research was published in the journal Science.

This is a breakthrough in the world of molecules because of the fundamental importance of quantum entanglement, said Lawrence Cheuk, assistant professor of physics at Princeton University and the senior author of the paper. But it is also a breakthrough for practical applications because entangled molecules can be the building blocks for many future applications.

These include, for example, quantum computers that can solve certain problems much faster than conventional computers, quantum simulators that can model complex materials whose behaviors are difficult to model, and quantum sensors that can measure faster than their traditional counterparts.

Laser setup for cooling, controlling, and entangling individual molecules. Credit: Richard Soden, Department of Physics, Princeton University

One of the motivations in doing quantum science is that in the practical world it turns out that if you harness the laws of quantum mechanics, you can do a lot better in many areas, said Connor Holland, a graduate student in the physics department and a co-author on the work.

The ability of quantum devices to outperform classical ones is known as quantum advantage. And at the core of quantum advantage are the principles of superposition and quantum entanglement. While a classical computer bit can assume the value of either 0 or 1, quantum bits, called qubits, can simultaneously be in a superposition of 0 and 1. The latter concept, entanglement, is a major cornerstone of quantum mechanics, and occurs when two particles become inextricably linked with each other so that this link persists, even if one particle is light years away from the other particle. It is the phenomenon that Albert Einstein, who at first questioned its validity, described as spooky action at a distance. Since then, physicists have demonstrated that entanglement is, in fact, an accurate description of the physical world and how reality is structured.

Quantum entanglement is a fundamental concept, said Cheuk, but it is also the key ingredient that bestows quantum advantage.

But building quantum advantage and achieving controllable quantum entanglement remains a challenge, not least because engineers and scientists are still unclear about which physical platform is best for creating qubits. In the past decades, many different technologiessuch as trapped ions, photons, superconducting circuits, to name only a fewhave been explored as candidates for quantum computers and devices. The optimal quantum system or qubit platform could very well depend on the specific application.

Until this experiment, however, molecules had long defied controllable quantum entanglement. But Cheuk and his colleagues found a way, through careful manipulation in the laboratory, to control individual molecules and coax them into these interlocking quantum states. They also believed that molecules have certain advantagesover atoms, for examplethat made them especially well-suited for certain applications in quantum information processing and quantum simulation of complex materials. Compared to atoms, for example, molecules have more quantum degrees of freedom and can interact in new ways.

What this means, in practical terms, is that there are new ways of storing and processing quantum information, said Yukai Lu, a graduate student in electrical and computer engineering and a co-author of the paper. For example, a molecule can vibrate and rotate in multiple modes. So, you can use two of these modes to encode a qubit. If the molecular species is polar, two molecules can interact even when spatially separated.

Nonetheless, molecules have proven notoriously difficult to control in the laboratory because of their complexity. The very degrees of freedom that make them attractive also make them hard to control, or corral, in laboratory settings.

Cheuk and his team addressed many of these challenges through a carefully thought-out experiment. They first picked a molecular species that is both polar and can be cooled with lasers. They then laser-cooled the molecules to ultracold temperatures where quantum mechanics takes centerstage. Individual molecules were then picked up by a complex system of tightly focused laser beams, so-called optical tweezers. By engineering the positions of the tweezers, they were able to create large arrays of single molecules and individually position them into any desired one-dimensional configuration. For example, they created isolated pairs of molecules and also defect-free strings of molecules.

Next, they encoded a qubit into a non-rotating and rotating state of the molecule. They were able to show that this molecular qubit remained coherent, that is, it remembered its superposition. In short, the researchers demonstrated the ability to create well-controlled and coherent qubits out of individually controlled molecules.

To entangle the molecules, they had to make the molecule interact. By using a series of microwave pulses, they were able to make individual molecules interact with one another in a coherent fashion. By allowing the interaction to proceed for a precise amount of time, they were able to implement a two-qubit gate that entangled two molecules. This is significant because such an entangling two-qubit gate is a building block for both universal digital quantum computing and for simulation of complex materials.

The potential of this research for investigating different areas of quantum science is large, given the innovative features offered by this new platform of molecular tweezer arrays. In particular, the Princeton team is interested in exploring the physics of many interacting molecules, which can be used to simulate quantum many-body systems where interesting emergent behavior such as novel forms of magnetism can appear.

Using molecules for quantum science is a new frontier and our demonstration of on-demand entanglement is a key step in demonstrating that molecules can be used as a viable platform for quantum science, said Cheuk.

In a separate article published in the same issue of Science, an independent research group led by John Doyle and Kang-Kuen Ni at Harvard University and Wolfgang Ketterle at the Massachusetts Institute of Technology achieved similar results.

The fact that they got the same results verify the reliability of our results, Cheuk said. They also show that molecular tweezer arrays are becoming an exciting new platform for quantum science.

Reference: On-demand entanglement of molecules in a reconfigurable optical tweezer array by Connor M. Holland, Yukai Lu and Lawrence W. Cheuk, 7 December 2023, Science. DOI: 10.1126/science.adf4272

The work was supported by Princeton University, the National Science Foundation (Grant No. 2207518), and the Sloan Foundation (Grant No. FG-2022-19104).

Continued here:
Quantum Leap: Princeton Physicists Successfully Entangle Individual Molecules for the First Time - SciTechDaily