Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice | Scientific Reports – Nature.com

World Health Organization (WHO). Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (2016).

Alzheimers Association. Alzheimers disease facts and figures. Alzheimers Dement. 17, 327406. https://doi.org/10.1002/alz.12328 (2021).

CAS Article Google Scholar

Whitmer, R. A., Gunderson, E. P., Barrett-Connor, E., Quesenberry, C. P. & Yaffe, K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330, 13601362. https://doi.org/10.1136/bmj.38446.466238.E0 (2005).

Article PubMed PubMed Central Google Scholar

Lloret, A., Monllor, P., Esteve, D., Cervera-Ferri, A. & Lloret, M. A. Obesity as a risk factor for Alzheimers disease: implication of leptin and glutamate. Front. Neurosci. https://doi.org/10.3389/fnins.2019.00508 (2019).

Article PubMed PubMed Central Google Scholar

Xu, W. L. et al. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76, 15681574. https://doi.org/10.1212/WNL.0b013e3182190d09 (2011).

CAS Article PubMed PubMed Central Google Scholar

Lane, C. A., Hardy, J. & Schott, J. M. Alzheimers disease. Eur. J. Neurol. 25, 5970. https://doi.org/10.1111/ene.13439 (2018).

CAS Article PubMed Google Scholar

Scheltens, P. et al. Alzheimers disease. The Lancet 388, 505517. https://doi.org/10.1016/S0140-6736(15)01124-1 (2016).

CAS Article Google Scholar

Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312339. https://doi.org/10.1016/j.cell.2019.09.001 (2019).

CAS Article PubMed PubMed Central Google Scholar

Huang, Y. & Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 148, 12041222. https://doi.org/10.1016/j.cell.2012.02.040 (2012).

CAS Article PubMed PubMed Central Google Scholar

Cline, E. N., Bicca, M. A., Viola, K. L. & Klein, W. L. The amyloid- oligomer hypothesis: beginning of the third decade. J. Alzheimers Dis. 64, S567S610. https://doi.org/10.3233/JAD-179941 (2018).

CAS Article Google Scholar

Lasagna-Reeves, C. A. et al. Identification of oligomers at early stages of tau aggregation in Alzheimers disease. FASEB J. 26, 19461959. https://doi.org/10.1096/fj.11-199851 (2012).

CAS Article PubMed PubMed Central Google Scholar

Dineley, K. T. et al. Amyloid- oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J. Neurosci. Res. 88, 29232932. https://doi.org/10.1002/jnr.22445 (2010).

CAS Article PubMed PubMed Central Google Scholar

Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimers disease prevalence. Lancet Neurol. 10, 819828. https://doi.org/10.1016/S1474-4422(11)70072-2 (2011).

Article PubMed PubMed Central Google Scholar

Armstrong, R. A. Risk factors for Alzheimers disease. Folia Neuropathol. 57, 87105. https://doi.org/10.5114/fn.2019.85929 (2019).

Article Google Scholar

Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and wingmen. Nat. Neurosci. 18, 800806. https://doi.org/10.1038/nn.4018 (2015).

CAS Article PubMed PubMed Central Google Scholar

Querfurth, H. W. & LaFerla, F. M. Alzheimers disease. N. Engl. J. Med. 362, 329344. https://doi.org/10.1056/NEJMra0909142 (2010).

CAS Article PubMed Google Scholar

Selkoe, D. J. Alzheimers disease. Cold Spring Harb. Perspect. Biol. 3, a004457a004457. https://doi.org/10.1101/cshperspect.a004457 (2011).

CAS Article PubMed PubMed Central Google Scholar

Joe, E. & Ringman, J. M. Cognitive symptoms of Alzheimers disease: clinical management and prevention. The BMJ https://doi.org/10.1136/bmj.l6217 (2019).

Article PubMed Google Scholar

Graham, W. V., Bonito-Oliva, A. & Sakmar, T. P. Update on Alzheimers disease therapy and prevention strategies. Annu. Rev. Med. 68, 413430. https://doi.org/10.1146/annurev-med-042915-103753 (2017).

CAS Article PubMed Google Scholar

Vaz, M. & Silvestre, S. Alzheimers disease: recent treatment strategies. Eur. J. Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173554 (2020).

Article PubMed Google Scholar

Bhatti, G. K., Reddy, A. P., Reddy, P. H. & Bhatti, J. S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimers disease. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00369 (2020).

Article PubMed PubMed Central Google Scholar

Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimers disease: an analysis of population-based data. Lancet Neurol. 13, 788794. https://doi.org/10.1016/S1474-4422(14)70136-X (2014).

Article PubMed Google Scholar

Livingston, G. et al. Dementia prevention, intervention, and care. The Lancet 390, 26732734. https://doi.org/10.1016/S0140-6736(17)31363-6 (2017).

Article Google Scholar

Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet 396, 413446. https://doi.org/10.1016/S0140-6736(20)30367-6 (2020).

Article Google Scholar

Miller, A. A. & Spencer, S. J. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav. Immun. 42, 1021. https://doi.org/10.1016/J.BBI.2014.04.001 (2014).

CAS Article PubMed Google Scholar

Crispino, M. et al. Interplay between peripheral and central inflammation in obesity-promoted disorders: the impact on synaptic mitochondrial functions. Int. J. Mol. Sci. 21, 5964. https://doi.org/10.3390/ijms21175964 (2020).

CAS Article PubMed Central Google Scholar

Blher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288298. https://doi.org/10.1038/s41574-019-0176-8 (2019).

Article PubMed Google Scholar

Haslam, D. W. & James, W. P. T. Obesity. The Lancet 366, 11971209. https://doi.org/10.1016/S0140-6736(05)67483-1 (2005).

Article Google Scholar

Leigh, S.-J. & Morris, M. J. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165767. https://doi.org/10.1016/j.bbadis.2020.165767 (2020).

CAS Article PubMed Google Scholar

Kivimki, M. et al. Body mass index and risk of dementia: analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 14, 601609. https://doi.org/10.1016/j.jalz.2017.09.016 (2018).

Article Google Scholar

Kacov, M. et al. Inflammation: major denominator of obesity, type 2 diabetes and Alzheimers disease-like pathology?. Clin. Sci. 134, 547570. https://doi.org/10.1042/CS20191313 (2020).

Article Google Scholar

Aguilar-Valles, A., Inoue, W., Rummel, C. & Luheshi, G. N. Obesity, adipokines and neuroinflammation. Neuropharmacology 96, 124134. https://doi.org/10.1016/J.NEUROPHARM.2014.12.023 (2015).

CAS Article PubMed Google Scholar

Busquets, O. et al. Long-term exposition to a high fat diet favors the appearance of -amyloid depositions in the brain of C57BL/6J mice. A potential model of sporadic Alzheimers disease. Mech. Ageing Dev. 162, 3845. https://doi.org/10.1016/J.MAD.2016.11.002 (2017).

CAS Article PubMed Google Scholar

Almeida-Suhett, C. P., Graham, A., Chen, Y. & Deuster, P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1 expression in specific brain regions. Physiol. Behav. 169, 130140. https://doi.org/10.1016/J.PHYSBEH.2016.11.016 (2017).

CAS Article PubMed Google Scholar

Hao, S., Dey, A., Yu, X. & Stranahan, A. M. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav. Immun. 51, 230239. https://doi.org/10.1016/J.BBI.2015.08.023 (2016).

Article PubMed Google Scholar

Erion, J. R. et al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J. Neurosci. 34, 26182631. https://doi.org/10.1523/JNEUROSCI.4200-13.2014 (2014).

CAS Article PubMed PubMed Central Google Scholar

Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 112. https://doi.org/10.1186/s40035-020-00221-2 (2020).

Article Google Scholar

Kempuraj, D. et al. Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 1, 1003 (2016).

PubMed PubMed Central Google Scholar

Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nat. Rev. Neurol. 17, 157172. https://doi.org/10.1038/s41582-020-00435-y (2021).

Article PubMed Google Scholar

Nichols, M. R. et al. Inflammatory mechanisms in neurodegeneration. J. Neurochem. 149, 562581. https://doi.org/10.1111/jnc.14674 (2019).

CAS Article PubMed PubMed Central Google Scholar

Heneka, M. T. et al. Neuroinflammation in Alzheimers disease. The Lancet Neurol. 14, 388405. https://doi.org/10.1016/S1474-4422(15)70016-5 (2015).

CAS Article PubMed Google Scholar

Guzman-Martinez, L. et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 10, 1008. https://doi.org/10.3389/fphar.2019.01008 (2019).

CAS Article PubMed PubMed Central Google Scholar

Suescun, J., Chandra, S. & Schiess, M. C. Chapter 13 - The Role of neuroinflammation in neurodegenerative disorders. In Perspectives in Translational Cell Biology, Translational Inflammation (eds Actor, J. K. & Smith, K. C.) 241267 (Academic Press, 2019), ISBN 9780128138328. https://doi.org/10.1016/B978-0-12-813832-8.00013-3

Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254266. https://doi.org/10.1056/NEJMra1514009 (2017).

CAS Article PubMed Google Scholar

Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 121, 21112117. https://doi.org/10.1172/JCI57132 (2011).

CAS Article PubMed PubMed Central Google Scholar

Cai, D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol. Metab. 24, 4047. https://doi.org/10.1016/J.TEM.2012.11.003 (2013).

CAS Article PubMed Google Scholar

Rahman, M. H., Bhusal, A., Lee, W. H., Lee, I. K. & Suk, K. Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: translational significance. Biochem. Pharmacol. 153, 123133. https://doi.org/10.1016/j.bcp.2018.01.024 (2018).

CAS Article PubMed Google Scholar

Schwartz, M. W. et al. Obesity pathogenesis: an endocrine society scientific statement. Endocr. Rev. 38, 267296. https://doi.org/10.1210/ER.2017-00111 (2017).

Article PubMed PubMed Central Google Scholar

Rahman, M. H., Kim, M.-S., Lee, I.-K., Yu, R. & Suk, K. Interglial crosstalk in obesity-induced hypothalamic inflammation. Front. Neurosci. 12, 939. https://doi.org/10.3389/fnins.2018.00939 (2018).

Article PubMed PubMed Central Google Scholar

Spencer, S. J. et al. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiol. Aging 58, 88101. https://doi.org/10.1016/J.NEUROBIOLAGING.2017.06.014 (2017).

CAS Article PubMed PubMed Central Google Scholar

Cavaliere, G. et al. High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front. Cell. Neurosci. 13, 509. https://doi.org/10.3389/fncel.2019.00509 (2019).

CAS Article PubMed PubMed Central Google Scholar

Read the rest here:
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice | Scientific Reports - Nature.com

Related Posts

Comments are closed.