8 most innovative AI and machine learning companies – TechRepublic
Image: peshkova/Adobe Stock
As enterprises increasingly try to put their data to work using artificial intelligence and machine learning, the landscape of vendors and open source projects can be daunting. And if anything, its only becoming more chaotic.
As FirstMark partner Matt Turck has written, in 2021 the industry saw a rapid emergence of a whole new generation of data and ML startups, and in 2022, this trend looks set to continue. AI/ML is so hot, in fact, that even with a recession looming CIOs remain loath to cut spending on AI/ML projects.
So where will enterprises spend that money? Or, rather, with whom?
To help you navigate the sometimes bewildering array of AI/ML options out there, I talked with data science professionals to get their picks on the most innovative companies in AI/ML. Though historically the industry focused on gee-whiz AI, such as computers that could play games or seemingly offer human reason, much of todays innovation is in less sexy but more essential areas like data preparation and operational concerns.
Jump to:
For many enterprises, the easy button for AI/ML will be to use the AI/ML services offered through their preferred cloud vendor. Though Google usually gets credited with having the strongest portfolio of AI/ML services, any of the big clouds will prove a solid choice. Google has led the market by open sourcing key frameworks like TensorFlow, and more recently has made it easy for companies to run things like TensorFlow in production with Cloud AutoML.
SEE: Artificial Intelligence Ethics Policy (TechRepublic Premium)
AWS has tended to innovate less in terms of frameworks and has instead focused on tooling like Sagemaker Studio, an IDE for machine learning, to help enterprises do more with less expertise. Microsoft offers something similar in Azure Machine Learning, enabling users to configure machine learning operations and pipelines. All three clouds also offer a bevy of API-driven services like Amazon Polly, a text-to-speech service.
As stated, many enterprises will begin and end with the AI/ML services they discover with their default cloud provider. Thats fine, but it misses much of the innovation happening elsewhere in startups and beyond. Though every enterprise should look to their cloud provider for AI/ML services, they should also consider innovators like those profiled below.
Though enterprises embraced R in the early days of data science, Python has since supplanted R to become the dominant language for AI/ML. Dask, an open source project that facilitates scaling Python workloads, has become a must-have for the data science crowd because it makes it possible to scale popular computational libraries like NumPy, pandas and scikit-learn beyond a single machine to multi-core machines and distributed clusters.
Scikit-learn can tap into Dask for parallelism, enabling the data scientist to train estimators using all the cores of a cluster without making significant changes to the underlying code. This sort of parallelism is critical for ML, because data scientists need to break up computations across a cluster to execute on large datasets.
The company behind Dask, Coiled, manages Dask clusters on AWS or Google Cloud, thereby making it easier to run Dask clusters in production. Coileds Dask innovation is all about lowering the bar to Python professionals doing more with ML.
With Coiled, data scientists can stick with the Python libraries they love, while Coiled takes care of provisioning cloud resources, handling instance failures, coordinating data synchronization across machines and securing the cloud environment, as Dask developer James Courbeau explained.
In a similar manner, OctoML introduces DevOps-level agility and automation to ML deployment on any hardware. Or, even more simply put, OctoML optimizes ML model performance on any hardware, no matter where its running. Given that getting models into production is one of the biggest barriers to enterprise productivity with AI/ML, OctoML is tackling a tough problem.
SEE: Metaverse cheat sheet: Everything you need to know (free PDF) (TechRepublic)
The deployment problem is made more difficult due to the rigid set of dependencies between a ML training framework like Pytorch, the model itself and the different hardware it will need to run on. OctoML automatically creates customized code for specific hardware parameters, selects appropriate libraries and compiler options and then configures hardware configuration settings to fine-tune performance. This requires knowledge of more than 80 deployment targets.
Such optimization of model deployment led the company founders to start by open sourcing what became Apache TVM, a deep learning compiler that has become the de facto deep learning compiler for ML giants like Amazon and Facebook. Building off that expertise, OctoML now tries to make it simpler for all companies to deploy machine learning models on varied hardware configurations.
Keeping with the theme of making ML more approachable for a wider population of users, MindsDB is all about bringing the power of ML to something enterprises already use daily: Their database. As one person explained to me, MindsDB is a way to raise the IQ of databases.
How so? By allowing users to add an ML-based prediction layer to their datasets. This means that anyone with knowledge of SQL can add ML capabilities to their databases by adding an ML-based prediction layer to their datasets. This layer, or extension of SQL, makes it so ML models can be created, queried and maintained as if they were database tables. MindsDB meets data professionals where they are, giving them a shortcut to ML proficiency.
In this way, MindsDB helps organizations make better use of their data to yield forecasts of what future data will look like based on past data. Of course, ML has long depended on pulling data from databases and other sources. The difference with MindsDBs approach is that companies dont need to go through the bother of extracting, transforming and loading their data into other systems. MindsDBs big innovation is to make ML possible right in the database.
I may ski 150+ days each season in Utahs backcountry, but Im sadly not in contention to become a professional skier. As such, Ill never get to use Zone7, the AI-driven human performance platform that analyzes extensive athlete data to suggest optimal rest and training regimens for professional sports teams.
If that seems niche, perhaps it is. But it led Liverpool, one of the most successful soccer clubs on the planet to reduce injuries by a third last season, even as the team competed across multiple competitions and won two of them. Sports is a big business, and a swelling number of professional teams across soccer, American football and rugby leagues are turning to Zone7.
SEE: Best business intelligence tools (TechRepublic)
So what does the company do, exactly? As the company has detailed themselves, Zone7 analyzes comprehensive player data, including in-game and training positioning information, as well as biometric, strength, sleep and stress levels. The platform, in turn, identifies undetected risk patterns, creates real-time injury threat alerts, and offers practical intervention methods to help guide and inform coaches decision-making.
Zone7, in other words, isnt something you or your company are likely to use. It is, however, something that the team you support just might embrace. Given my soccer teams injury record (Arsenal), it cant happen soon enough.
BLOOM is an open source, multilingual language that aims to tackle the biases ML systems inherit from their training texts. In every other example provided here, the AI/ML innovations are for sale. Not BLOOM. In fact, this is a key requirement of the language as it attempts to break large technology companies grip on natural language processing. Though companies are involved, organized into a group called BigScience, no one company controls BLOOM.
The costs and expertise associated with training large language models to make statistical inferences between billions of words are immense, so only big companies can afford to participate. By contrast, BLOOM is being developed and shaped by hundreds of researchers, including some from Facebook and Google, working as individuals in true open source fashion.
Rather than taking the standard approach of training the model based on text pulled from the Internet just imagine how impartial a model based on a days worth of text from Twitter would be the researchers carefully selected roughly two-thirds of their 341-billion word data set from 500 sources. This doesnt guarantee that BLOOM will be bias-free, but as an open source project, contributors can improve it to remove biases.
Importantly, BLOOM will be made available free of charge. Yes, there will be a cost associated with running it, but Hugging Face and other companies are figuring out ways to make the costs minimal. BLOOM is not yet available to use, but it may significantly democratize NLP.
Landing AI should be on everyones list of AI/ML innovators if for no other reason than it was founded by Andrew Ng, co-founder of Coursera and founding lead of Google Brain. Ng is a big deal in big data, and with his pedigree comes experience putting ML into practice. As such, its perhaps not surprising that a big focus for Landing AI is improving data quality.
Data preparation tends to be as much as 70% of the work done by data scientists, and Landing AI tries to ameliorate this by taking a data-centric approach to ML. As Ng put it, instead of focusing on the code, companies should focus on developing systematic engineering practices for improving data in ways that are reliable, efficient and systematic.
The companys first product is LandingLens, an enterprise MLOps platform for machine vision. LandingLens is a visual inspection platform that aims to ensure product quality by improving inspection accuracy and reducing false positives. It does this through collaboration between ML engineers to train, test, confirm and deploy deep-learning models based on high-quality, verified data to edge devices within the manufacturing process. Landing AI is trying to apply cutting-edge ML to legacy industries like manufacturing, healthcare and agriculture.
Databricks is hardly a startup, and that shows in its integrated, holistic ML platform that includes managed services for experiment tracking, model training, feature development and management, and feature and model serving. Databricks started Delta Lake, a lakehouse approach to incorporating massive quantities of enterprise data in one place. From there, the company offers a platform that enables ML teams to collaborate on data preparation and processing, giving teams a central, standardized approach to working with data and associated ML models.
Databricks integrates well with each of the cloud providers, particularly Microsoft Azure. Though Databricks relies on Apache Spark, users can also use their preferred programming languages like Python, R and SQL, and Databricks does the backend work to ensure they work fine with Spark too.
SEE: Hiring Kit: Artificial Intelligence Architect (TechRepublic Premium)
In fact, this type of work is arguably Databricks biggest innovation: Giving data scientists and others a one-stop shop for tracking experiments, reproducing results at significant scale, moving models into production, and redeploying and rolling out updated models. Other companies tackle isolated aspects of these challenges, but Databricks takes an end-to-end platform approach.
The most strangely named company may also be the most innovative. Hugging Face, which started as a chatbot and evolved to offer a registry of NLP models used to deliver those chatbots, is now on track to become the GitHub of ML. Today the company hosts over 100,000 pre-trained transformer models and more than 10,000 datasets for NLP, computer vision, speech, time-series and reinforcement learning. More than 10,000 companies use Hugging Face to privately collaborate on ML applications.
It has long been an impediment to ML adoption that collaboration within an organization has been so challenging. Different teams might be building essentially the same models, duplicating effort, and there was no standardized approach to building and deploying transformer models.
Hugging Face changes this by making it simple to discover and collaborate on models within an organization, just as GitHub and GitLab do for code. The company offers its Inference API, which provides access to tens of thousands of pre-trained models. This is important because most companies lack the expertise to build models themselves.
The company also offers AutoTrain, which helps enterprises easily develop and automatically fine-tune models. Finally, Hugging Face takes care of deployment. And as with GitHub, a Hugging Face user can blend the best of public transformers with private models securely and safely.
Hugging Face co-founder and CEO Clement Delangue believes that the number of ML professionals could surpass the number of developers by 2027. By making ML accessible to a broader variety of professionals, including developers, Hugging Face may well be a critical accelerant to reaching that goal. The company, which has open sourced key elements of its technology since its chatbot founding, has made open collaboration a key tenet for how it builds and enables others to build. So far, it seems to be working.
Disclosure: I work for MongoDB, but the views expressed herein are mine.
Go here to read the rest:
8 most innovative AI and machine learning companies - TechRepublic
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]