AI: The pattern is not in the data, it’s in the machine – ZDNet
A neural network transforms input, the circles on the left, to output, on the right. How that happens is a transformation of weights, center, which we often confuse for patterns in the data itself.
It's a commonplace of artificial intelligence to say that machine learning, which depends on vast amounts of data, functions by finding patterns in data.
The phrase, "finding patterns in data," in fact, has been a staple phrase of things such as data mining and knowledge discovery for years now, and it has been assumed that machine learning, and its deep learning variant especially, are just continuing the tradition of finding such patterns.
AI programs do, indeed, result in patterns, but, just as "The fault, dear Brutus, lies not in our stars but in ourselves," the fact of those patterns is not something in the data, it is what the AI program makes of the data.
Almost all machine learning models function via a learning rule that changes the so-called weights, also known as parameters, of the program as the program is fed examples of data, and, possibly, labels attached to that data. It is the value of the weights that counts as "knowing" or "understanding."
The pattern that is being found is really a pattern of how weights change. The weights are simulating how real neurons are believed to "fire", the principle formed by psychologist Donald O. Hebb, which became known as Hebbian learning, the idea that "neurons that fire together, wire together."
Also: AI in sixty seconds
It is the pattern of weight changes that is the model for learning and understanding in machine learning, something the founders of deep learning emphasized. As expressed almost forty years ago, in one of the foundational texts of deep learning, Parallel Distributed Processing, Volume I, James McClelland, David Rumelhart, and Geoffrey Hinton wrote,
What is stored is the connection strengths between units that allow these patterns to be created [] If the knowledge is the strengths of the connections, learning must be a matter of finding the right connection strengths so that the right patterns of activation will be produced under the right circumstances.
McClelland, Rumelhart, and Hinton were writing for a select audience, cognitive psychologists and computer scientists, and they were writing in a very different age, an age when people didn't make easy assumptions that anything a computer did represented "knowledge." They were laboring at a time when AI programs couldn't do much at all, and they were mainly concerned with how to produce a computation, any computation, from a fairly limited arrangement of transistors.
Then, starting with the rise of powerful GPU chips some sixteen years ago, computers really did begin to produce interesting behavior, capped off by the landmark ImageNet performance of Hinton's work with his graduate students in 2012 that marked deep learning's coming of age.
As a consequence of the new computer achievements, the popular mind started to build all kinds of mythology around AI and deep learning. There was a rush of really bad headlines likening the technology to super-human performance.
Also: Why is AI reporting so bad?
Today's conception of AI has obscured what McClelland, Rumelhart, and Hinton focused on, namely, the machine, and how it "creates" patterns, as they put it. They were very intimately familiar with the mechanics of weights constructing a pattern as a response to what was, in the input, merely data.
Why does all that matter? If the machine is the creator of patterns, then the conclusions people draw about AI are probably mostly wrong. Most people assume a computer program is perceiving a pattern in the world, which can lead to people deferring judgment to the machine. If it produces results, the thinking goes, the computer must be seeing something humans don't.
Except that a machine that constructs patterns isn't explicitly seeing anything. It's constructing a pattern. That means what is "seen" or "known" is not the same as the colloquial, everyday sense in which humans speak of themselves as knowing things.
Instead of starting from the anthropocentric question, What does the machine know? it's best to start from a more precise question, What is this program representing in the connections of its weights?
Depending on the task, the answer to that question takes many forms.
Consider computer vision. The convolutional neural network that underlies machine learning programs for image recognition and other visual perception is composed of a collection of weights that measure pixel values in a digital image.
The pixel grid is already an imposition of a 2-D coordinate system on the real world. Provided with the machine-friendly abstraction of the coordinate grid, a neural net's task of representation boils down to matching the strength of collections of pixels to a label that has been imposed, such as "bird" or "blue jay."
In a scene containing a bird, or specifically a blue jay, many things may be happening, including clouds, sunshine, and passers by. But the scene in its entirety is not the thing. What matters to the program is the collection of pixels most likely to produce an appropriate label. The pattern, in other words, is a reductive act of focus and selection inherent in the activation of neural net connections.
You might say, a program of this kind doesn't "see" or "perceive" so much as it filters.
Also: A new experiment: Does AI really know cats or dogs -- or anything?
The same is true in games, where AI has mastered chess and poker. In the full information game of chess, for DeepMind's AlphaZero program, the machine learning task boils down to crafting a probability score at each moment of how much a potential next move will lead ultimately to win, lose or draw.
Because the number of potential future game board configurations cannot be calculated even by the fastest computers, the computer's weights cut short the search for moves by doing what you might call summarizing. The program summarizes the likelihood of a success if one were to pursue several moves in a given direction, and then compares that summary to the summary of potential moves to be taken in another direction.
Whereas the state of the board at any moment the position of pieces, and which pieces remain might "mean" something to a human chess grandmaster, it's not clear the term "mean" has any meaning for DeepMind's AlphaZero for such a summarizing task.
A similar summarizing task is achieved for the Pluribus program that in 2019 conquered the hardest form of poker, No-limit Texas hold'em. That game is even more complex in that it has hidden information, the players' face down cards, and additional "stochastic" elements of bluffing. But the representation is, again, a summary of likelihoods by each turn.
Even in human language, what's in the weights is different from what the casual observer might suppose. GPT-3, the top language program from OpenAI, can produce strikingly human-like output in sentences and paragraphs.
Does the program "know" language? Its weights hold a representation of the likelihood of how individual words and even whole strings of text are found in sequence with other words and strings.
You could call that function of a neural net a summary similar to AlphaGo or Pluribus, given that the problem is rather like chess or poker. But the possible states to be represented as connections in the neural net are not just vast, they are infinite given the infinite composability of language.
On the other hand, given that the output of a language program such as GPT-3, a sentence, is a fuzzy answer rather than a discrete score, the "right answer" is somewhat less demanding than the win, lose or draw of chess or poker. You could also call this function of GPT-3 and similar programs an "indexing" or an inventory" of things in their weights.
Also: What is GPT-3? Everything your business needs to know about OpenAI's breakthrough AI language program
Do humans have a similar kind of inventory or index of language? There doesn't seem to be any indication of it so far in neuroscience. Likewise, in the expression"to tell the dancer from the dance,"does GPT-3 spot the multiple levels of significance in the phrase, or the associations? It's not clear such a question even has a meaning in the context of a computer program.
In each of these cases chess board, cards, word strings the data are what they are: a fashioned substrate divided in various ways, a set of plastic rectangular paper products, a clustering of sounds or shapes. Whether such inventions "mean" anything, collectively, to the computer, is only a way of saying that a computer becomes tuned in response, for a purpose.
The things such data prompt in the machine filters, summarizations, indices, inventories, or however you want to characterize those representations are never the thing in itself. They are inventions.
Also: DeepMind: Why is AI so good at language? It's something in language itself
But, you may say, people see snowflakes and see their differences, and also catalog those differences, if they have a mind to. True, human activity has always sought to find patterns, via various means. Direct observation is one of the simplest means, and in a sense, what is being done in a neural network is a kind of extension of that.
You could say the neural network revels what was always true in human activity for millennia, that to speak of patterns is a thing imposed on the world rather than a thing in the world. In the world, snowflakes have form but that form is only a pattern to a person who collects and indexes them and categorizes them. It is a construction, in other words.
The activity of creating patterns will increase dramatically as more and more programs are unleashed on the data of the world, and their weights are tuned to form connections that we hope create useful representations. Such representations may be incredibly useful. They may someday cure cancer. It is useful to remember, however, that the patterns they reveal are not out there in the world, they are in the eye of the perceiver.
Also: DeepMind's 'Gato' is mediocre, so why did they build it?
Excerpt from:
AI: The pattern is not in the data, it's in the machine - ZDNet
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]