AI: The pattern is not in the data, it’s in the machine – ZDNet
A neural network transforms input, the circles on the left, to output, on the right. How that happens is a transformation of weights, center, which we often confuse for patterns in the data itself.
It's a commonplace of artificial intelligence to say that machine learning, which depends on vast amounts of data, functions by finding patterns in data.
The phrase, "finding patterns in data," in fact, has been a staple phrase of things such as data mining and knowledge discovery for years now, and it has been assumed that machine learning, and its deep learning variant especially, are just continuing the tradition of finding such patterns.
AI programs do, indeed, result in patterns, but, just as "The fault, dear Brutus, lies not in our stars but in ourselves," the fact of those patterns is not something in the data, it is what the AI program makes of the data.
Almost all machine learning models function via a learning rule that changes the so-called weights, also known as parameters, of the program as the program is fed examples of data, and, possibly, labels attached to that data. It is the value of the weights that counts as "knowing" or "understanding."
The pattern that is being found is really a pattern of how weights change. The weights are simulating how real neurons are believed to "fire", the principle formed by psychologist Donald O. Hebb, which became known as Hebbian learning, the idea that "neurons that fire together, wire together."
Also: AI in sixty seconds
It is the pattern of weight changes that is the model for learning and understanding in machine learning, something the founders of deep learning emphasized. As expressed almost forty years ago, in one of the foundational texts of deep learning, Parallel Distributed Processing, Volume I, James McClelland, David Rumelhart, and Geoffrey Hinton wrote,
What is stored is the connection strengths between units that allow these patterns to be created [] If the knowledge is the strengths of the connections, learning must be a matter of finding the right connection strengths so that the right patterns of activation will be produced under the right circumstances.
McClelland, Rumelhart, and Hinton were writing for a select audience, cognitive psychologists and computer scientists, and they were writing in a very different age, an age when people didn't make easy assumptions that anything a computer did represented "knowledge." They were laboring at a time when AI programs couldn't do much at all, and they were mainly concerned with how to produce a computation, any computation, from a fairly limited arrangement of transistors.
Then, starting with the rise of powerful GPU chips some sixteen years ago, computers really did begin to produce interesting behavior, capped off by the landmark ImageNet performance of Hinton's work with his graduate students in 2012 that marked deep learning's coming of age.
As a consequence of the new computer achievements, the popular mind started to build all kinds of mythology around AI and deep learning. There was a rush of really bad headlines likening the technology to super-human performance.
Also: Why is AI reporting so bad?
Today's conception of AI has obscured what McClelland, Rumelhart, and Hinton focused on, namely, the machine, and how it "creates" patterns, as they put it. They were very intimately familiar with the mechanics of weights constructing a pattern as a response to what was, in the input, merely data.
Why does all that matter? If the machine is the creator of patterns, then the conclusions people draw about AI are probably mostly wrong. Most people assume a computer program is perceiving a pattern in the world, which can lead to people deferring judgment to the machine. If it produces results, the thinking goes, the computer must be seeing something humans don't.
Except that a machine that constructs patterns isn't explicitly seeing anything. It's constructing a pattern. That means what is "seen" or "known" is not the same as the colloquial, everyday sense in which humans speak of themselves as knowing things.
Instead of starting from the anthropocentric question, What does the machine know? it's best to start from a more precise question, What is this program representing in the connections of its weights?
Depending on the task, the answer to that question takes many forms.
Consider computer vision. The convolutional neural network that underlies machine learning programs for image recognition and other visual perception is composed of a collection of weights that measure pixel values in a digital image.
The pixel grid is already an imposition of a 2-D coordinate system on the real world. Provided with the machine-friendly abstraction of the coordinate grid, a neural net's task of representation boils down to matching the strength of collections of pixels to a label that has been imposed, such as "bird" or "blue jay."
In a scene containing a bird, or specifically a blue jay, many things may be happening, including clouds, sunshine, and passers by. But the scene in its entirety is not the thing. What matters to the program is the collection of pixels most likely to produce an appropriate label. The pattern, in other words, is a reductive act of focus and selection inherent in the activation of neural net connections.
You might say, a program of this kind doesn't "see" or "perceive" so much as it filters.
Also: A new experiment: Does AI really know cats or dogs -- or anything?
The same is true in games, where AI has mastered chess and poker. In the full information game of chess, for DeepMind's AlphaZero program, the machine learning task boils down to crafting a probability score at each moment of how much a potential next move will lead ultimately to win, lose or draw.
Because the number of potential future game board configurations cannot be calculated even by the fastest computers, the computer's weights cut short the search for moves by doing what you might call summarizing. The program summarizes the likelihood of a success if one were to pursue several moves in a given direction, and then compares that summary to the summary of potential moves to be taken in another direction.
Whereas the state of the board at any moment the position of pieces, and which pieces remain might "mean" something to a human chess grandmaster, it's not clear the term "mean" has any meaning for DeepMind's AlphaZero for such a summarizing task.
A similar summarizing task is achieved for the Pluribus program that in 2019 conquered the hardest form of poker, No-limit Texas hold'em. That game is even more complex in that it has hidden information, the players' face down cards, and additional "stochastic" elements of bluffing. But the representation is, again, a summary of likelihoods by each turn.
Even in human language, what's in the weights is different from what the casual observer might suppose. GPT-3, the top language program from OpenAI, can produce strikingly human-like output in sentences and paragraphs.
Does the program "know" language? Its weights hold a representation of the likelihood of how individual words and even whole strings of text are found in sequence with other words and strings.
You could call that function of a neural net a summary similar to AlphaGo or Pluribus, given that the problem is rather like chess or poker. But the possible states to be represented as connections in the neural net are not just vast, they are infinite given the infinite composability of language.
On the other hand, given that the output of a language program such as GPT-3, a sentence, is a fuzzy answer rather than a discrete score, the "right answer" is somewhat less demanding than the win, lose or draw of chess or poker. You could also call this function of GPT-3 and similar programs an "indexing" or an inventory" of things in their weights.
Also: What is GPT-3? Everything your business needs to know about OpenAI's breakthrough AI language program
Do humans have a similar kind of inventory or index of language? There doesn't seem to be any indication of it so far in neuroscience. Likewise, in the expression"to tell the dancer from the dance,"does GPT-3 spot the multiple levels of significance in the phrase, or the associations? It's not clear such a question even has a meaning in the context of a computer program.
In each of these cases chess board, cards, word strings the data are what they are: a fashioned substrate divided in various ways, a set of plastic rectangular paper products, a clustering of sounds or shapes. Whether such inventions "mean" anything, collectively, to the computer, is only a way of saying that a computer becomes tuned in response, for a purpose.
The things such data prompt in the machine filters, summarizations, indices, inventories, or however you want to characterize those representations are never the thing in itself. They are inventions.
Also: DeepMind: Why is AI so good at language? It's something in language itself
But, you may say, people see snowflakes and see their differences, and also catalog those differences, if they have a mind to. True, human activity has always sought to find patterns, via various means. Direct observation is one of the simplest means, and in a sense, what is being done in a neural network is a kind of extension of that.
You could say the neural network revels what was always true in human activity for millennia, that to speak of patterns is a thing imposed on the world rather than a thing in the world. In the world, snowflakes have form but that form is only a pattern to a person who collects and indexes them and categorizes them. It is a construction, in other words.
The activity of creating patterns will increase dramatically as more and more programs are unleashed on the data of the world, and their weights are tuned to form connections that we hope create useful representations. Such representations may be incredibly useful. They may someday cure cancer. It is useful to remember, however, that the patterns they reveal are not out there in the world, they are in the eye of the perceiver.
Also: DeepMind's 'Gato' is mediocre, so why did they build it?
Excerpt from:
AI: The pattern is not in the data, it's in the machine - ZDNet
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]