An introduction to generative AI with Swami Sivasubramanian – All Things Distributed
In the last few months, weve seen an explosion of interest in generative AI and the underlying technologies that make it possible. It has pervaded the collective consciousness for many, spurring discussions from board rooms to parent-teacher meetings. Consumers are using it, and businesses are trying to figure out how to harness its potential. But it didnt come out of nowhere machine learning research goes back decades. In fact, machine learning is something that weve done well at Amazon for a very long time. Its used for personalization on the Amazon retail site, its used to control robotics in our fulfillment centers, its used by Alexa to improve intent recognition and speech synthesis. Machine learning is in Amazons DNA.
To get to where we are, its taken a few key advances. First, was the cloud. This is the keystone that provided the massive amounts of compute and data that are necessary for deep learning. Next, were neural nets that could understand and learn from patterns. This unlocked complex algorithms, like the ones used for image recognition. Finally, the introduction of transformers. Unlike RNNs, which process inputs sequentially, transformers can process multiple sequences in parallel, which drastically speeds up training times and allows for the creation of larger, more accurate models that can understand human knowledge, and do things like write poems, even debug code.
I recently sat down with an old friend of mine, Swami Sivasubramanian, who leads database, analytics and machine learning services at AWS. He played a major role in building the original Dynamo and later bringing that NoSQL technology to the world through Amazon DynamoDB. During our conversation I learned a lot about the broad landscape of generative AI, what were doing at Amazon to make large language and foundation models more accessible, and last, but not least, how custom silicon can help to bring down costs, speed up training, and increase energy efficiency.
We are still in the early days, but as Swami says, large language and foundation models are going to become a core part of every application in the coming years. Im excited to see how builders use this technology to innovate and solve hard problems.
To think, it was more than 17 years ago, on his first day, that I gave Swami two simple tasks: 1/ help build a database that meets the scale and needs of Amazon; 2/ re-examine the data strategy for the company. He says it was an ambitious first meeting. But I think hes done a wonderful job.
If youd like to read more about what Swamis teams have built, you can read more here. The entire transcript of our conversation is available below. Now, as always, go build!
This transcript has been lightly edited for flow and readability.
***
Werner Vogels: Swami, we go back a long time. Do you remember your first day at Amazon?
Swami Sivasubramanian: I still remember… it wasnt very common for PhD students to join Amazon at that time, because we were known as a retailer or an ecommerce site.
WV: We were building things and thats quite a departure for an academic. Definitely for a PhD student. To go from thinking, to actually, how do I build?
So you brought DynamoDB to the world, and quite a few other databases since then. But now, under your purview theres also AI and machine learning. So tell me, what does your world of AI look like?
SS: After building a bunch of these databases and analytic services, I got fascinated by AI because literally, AI and machine learning puts data to work.
If you look at machine learning technology itself, broadly, its not necessarily new. In fact, some of the first papers on deep learning were written like 30 years ago. But even in those papers, they explicitly called out for it to get large scale adoption, it required a massive amount of compute and a massive amount of data to actually succeed. And thats what cloud got us to to actually unlock the power of deep learning technologies. Which led me to this is like 6 or 7 years ago to start the machine learning organization, because we wanted to take machine learning, especially deep learning style technologies, from the hands of scientists to everyday developers.
WV: If you think about the early days of Amazon (the retailer), with similarities and recommendations and things like that, were they the same algorithms that were seeing used today? Thats a long time ago almost 20 years.
SS: Machine learning has really gone through huge growth in the complexity of the algorithms and the applicability of use cases. Early on the algorithms were a lot simpler, like linear algorithms or gradient boosting.
The last decade, it was all around deep learning, which was essentially a step up in the ability for neural nets to actually understand and learn from the patterns, which is effectively what all the image based or image processing algorithms come from. And then also, personalization with different kinds of neural nets and so forth. And thats what led to the invention of Alexa, which has a remarkable accuracy compared to others. The neural nets and deep learning has really been a step up. And the next big step up is what is happening today in machine learning.
WV: So a lot of the talk these days is around generative AI, large language models, foundation models. Tell me, why is that different from, lets say, the more task-based, like fission algorithms and things like that?
SS: If you take a step back and look at all these foundation models, large language models… these are big models, which are trained with hundreds of millions of parameters, if not billions. A parameter, just to give context, is like an internal variable, where the ML algorithm must learn from its data set. Now to give a sense… what is this big thing suddenly that has happened?
A few things. One, transformers have been a big change. A transformer is a kind of a neural net technology that is remarkably scalable than previous versions like RNNs or various others. So what does this mean? Why did this suddenly lead to all this transformation? Because it is actually scalable and you can train them a lot faster, and now you can throw a lot of hardware and a lot of data [at them]. Now that means, I can actually crawl the entire world wide web and actually feed it into these kind of algorithms and start building models that can actually understand human knowledge.
WV: So the task-based models that we had before and that we were already really good at could you build them based on these foundation models? Task specific models, do we still need them?
SS: The way to think about it is that the need for task-based specific models are not going away. But what essentially is, is how we go about building them. You still need a model to translate from one language to another or to generate code and so forth. But how easy now you can build them is essentially a big change, because with foundation models, which are the entire corpus of knowledge… thats a huge amount of data. Now, it is simply a matter of actually building on top of this and fine tuning with specific examples.
Think about if youre running a recruiting firm, as an example, and you want to ingest all your resumes and store it in a format that is standard for you to search an index on. Instead of building a custom NLP model to do all that, now using foundation models with a few examples of an input resume in this format and here is the output resume. Now you can even fine tune these models by just giving a few specific examples. And then you essentially are good to go.
WV: So in the past, most of the work went into probably labeling the data. I mean, and that was also the hardest part because that drives the accuracy.
SS: Exactly.
WV: So in this particular case, with these foundation models, labeling is no longer needed?
SS: Essentially. I mean, yes and no. As always with these things there is a nuance. But a majority of what makes these large scale models remarkable, is they actually can be trained on a lot of unlabeled data. You actually go through what I call a pre-training phase, which is essentially you collect data sets from, lets say the world wide Web, like common crawl data or code data and various other data sets, Wikipedia, whatnot. And then actually, you dont even label them, you kind of feed them as it is. But you have to, of course, go through a sanitization step in terms of making sure you cleanse data from PII, or actually all other stuff for like negative things or hate speech and whatnot. Then you actually start training on a large number of hardware clusters. Because these models, to train them can take tens of millions of dollars to actually go through that training. Finally, you get a notion of a model, and then you go through the next step of what is called inference.
WV: Lets take object detection in video. That would be a smaller model than what we see now with the foundation models. Whats the cost of running a model like that? Because now, these models with hundreds of billions of parameters are very large.
SS: Yeah, thats a great question, because there is so much talk already happening around training these models, but very little talk on the cost of running these models to make predictions, which is inference. Its a signal that very few people are actually deploying it at runtime for actual production. But once they actually deploy in production, they will realize, oh no, these models are very, very expensive to run. And that is where a few important techniques actually really come into play. So one, once you build these large models, to run them in production, you need to do a few things to make them affordable to run at scale, and run in an economical fashion. Ill hit some of them. One is what we call quantization. The other one is what I call a distillation, which is that you have these large teacher models, and even though they are trained on hundreds of billions of parameters, they are distilled to a smaller fine-grain model. And speaking in a super abstract term, but that is the essence of these models.
WV: So we do build… we do have custom hardware to help out with this. Normally this is all GPU-based, which are expensive energy hungry beasts. Tell us what we can do with custom silicon hatt sort of makes it so much cheaper and both in terms of cost as well as, lets say, your carbon footprint.
SS: When it comes to custom silicon, as mentioned, the cost is becoming a big issue in these foundation models, because they are very very expensive to train and very expensive, also, to run at scale. You can actually build a playground and test your chat bot at low scale and it may not be that big a deal. But once you start deploying at scale as part of your core business operation, these things add up.
In AWS, we did invest in our custom silicons for training with Tranium and with Inferentia with inference. And all these things are ways for us to actually understand the essence of which operators are making, or are involved in making, these prediction decisions, and optimizing them at the core silicon level and software stack level.
WV: If cost is also a reflection of energy used, because in essence thats what youre paying for, you can also see that they are, from a sustainability point of view, much more important than running it on general purpose GPUs.
WV: So theres a lot of public interest in this recently. And it feels like hype. Is this something where we can see that this is a real foundation for future application development?
SS: First of all, we are living in very exciting times with machine learning. I have probably said this now every year, but this year it is even more special, because these large language models and foundation models truly can enable so many use cases where people dont have to staff separate teams to go build task specific models. The speed of ML model development will really actually increase. But you wont get to that end state that you want in the next coming years unless we actually make these models more accessible to everybody. This is what we did with Sagemaker early on with machine learning, and thats what we need to do with Bedrock and all its applications as well.
But we do think that while the hype cycle will subside, like with any technology, but these are going to become a core part of every application in the coming years. And they will be done in a grounded way, but in a responsible fashion too, because there is a lot more stuff that people need to think through in a generative AI context. What kind of data did it learn from, to actually, what response does it generate? How truthful it is as well? This is the stuff we are excited to actually help our customers [with].
WV: So when you say that this is the most exciting time in machine learning what are you going to say next year?
More:
An introduction to generative AI with Swami Sivasubramanian - All Things Distributed
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]
- Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential... - March 1st, 2025 [March 1st, 2025]
- Utilization of tree-based machine learning models for predicting low birth weight cases - BMC Pregnancy and Childbirth - March 1st, 2025 [March 1st, 2025]
- Machine learning-based pattern recognition of Bender element signals for predicting sand particle-size - Nature.com - March 1st, 2025 [March 1st, 2025]
- Wearable Tech Uses Machine Learning to Predict Mood Swings - IoT World Today - March 1st, 2025 [March 1st, 2025]
- Machine learning can prevent thermal runaway in EV batteries - Automotive World - March 1st, 2025 [March 1st, 2025]
- Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes - Nature.com - March 1st, 2025 [March 1st, 2025]
- Data Analytics Market Size to Surpass USD 483.41 Billion by 2032 Owing to Rising Adoption of AI & Machine Learning Technologies - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- Predictive AI Only Works If Stakeholders Tune This Dial - The Machine Learning Times - March 1st, 2025 [March 1st, 2025]
- Relationship between atherogenic index of plasma and length of stay in critically ill patients with atherosclerotic cardiovascular disease: a... - March 1st, 2025 [March 1st, 2025]