Artificial Intelligence and Machine Learning Are Headed for A Major Bottleneck Here’s How We Solve It – Datanami
(ArtemisDiana/Shutterstock)
Artificial intelligence (AI) and machine learning (ML) are already changing the world but the innovations were seeing so far are just a taste of whats around the corner. We are on the precipice of a revolution that will affect every industry, from business and education to healthcare and entertainment. These new technologies will help solve some of the most challenging problems of our age and bring changes comparable in scale to the renaissance, the Industrial Revolution, and the electronic age.
While the printing press, fossil fuels, and silicon drove these past epochal shifts, a new generation of algorithms that automate tasks previously thought impossible will drive the next revolution. These new technologies will allow self-driving cars to identify traffic patterns, automate energy balancing in smart power grids, enable real-time language translation, and pioneer complex analytical tools that detect cancer before any human could ever perceive it.
Well, thats the promise of the AI and ML revolution, anyway. And to be clear, these things are all within our theoretical reach. But what the tech optimists tend to leave out is that our path to the bright, shiny AI future has some major potholes in it. One problem is looming especially large. We call it the dirty secret of AI and ML: right now, AI and ML dont scale well.
Scale the ability to expand a single machines capability to broader, more widespread applications is the holy grail of every digital business. And right now, AI and ML dont have it. While algorithms may hold the keys to our future, when it comes to creating them, were currently stuck in a painstaking, brute force methodology.
(paitoon/Shutterstock)
CreatingAI and ML algorithms isnt the hard part anymore. You tell them what to learn, feed them the right data, and they learn how to parse novel data without your help. The labor-intensive piece comes when you want the algorithms to operate in the real world. Left to their own devices, AI will suck up as much time, compute, and data/bandwidth as you give it. To be truly effective, these algorithms need to run lean, especially now that businesses and consumers are showing an increasing appetite for low-latency operations at the edge. Getting your AI to run in an environment where speed, compute,
and bandwidth are all constrained is the real magic trick here.
Thus, optimizing AI and ML algorithms has become the signature skill of todays AI researchers/engineers. Its expensive in terms of time, resources, money, and talent, but essential if you want performantAI. However, today, the primary way were addressing the problem is via brute force throwing bodies at the problem. Unfortunately, the demand for these algorithms is exploding while the pool of qualified AI engineers remains relatively static. Even if it were economically feasible to hire them, there are not enough trained AI engineers to work on all the projects that will take the world to the resplendent AI/sci-fi future weve been promised.
But all is not lost. There is a way for us to get across the threshold to achieve the exponential AI advances we require. The answer to scaling AI and ML algorithms is actually a simple idea. Train ML algorithms to tune ML algorithms, an approach the industry calls Automated Machine Learning, or AutoML. Tuning AI and ML algorithms may be more of an art than a science, but then again, so is driving, photo retouching, and instant language translation, all of which are addressable via AI and ML.
(Phonlamai Photo/Shutterstock)
AutoML will allow us to scale AI optimization so it can achieve full adoption throughout computing, including at the edge where latency and compute are constrained. By using hardware awareness in AutoML, we can push performance even further. We believe this approach will also lead to a world where the barrier to entry for AI programmers is lower, allowing more people to enter the field, and making better use of high-level programmers. Its our hope that the resulting shift will alleviate the current talent bottleneck the industry is facing.
Over the next few years, we expect to automate various AI optimization techniques such as pruning, distillation, neural architecture search, and others, to achieve 15-30x performance improvements. Googles EfficientNet research has also yielded very promising results in the field of auto-scaling convolutional neural networks. Another example is DataRobots AutoML tools, which can be applied to automating the tedious and time-consuming manual work required for data preparation and model selection.
There is one last hurdle to cross, though. AI automates tasks we always assumed we needed humans to do, offloading these difficult feats to a computer programmed by a clever AI engineer. The dream of AutoML is to offload the work another level, using AI algorithms to tune and create new AI algorithms. But theres no such thing as a free lunch. We will now need evenmore highlyskilled programmers to develop the AutoML routines at the meta-level. The good news is, we think weve got enough of them to do this.
But its not all about growing the field from the top. This innovation not only expands the pool of potential programmers, allowing lower-level programmers to create highly effective AI it provides a de facto training path to move them into higher and higher-skilled positions. This in turn will create a robust talent pipeline that can supply the industry for years to come and ensure we have a good supply of hardcore AI developers for when we hit the next bottleneck. Because yes, there may come a day when we need Auto-AutoML, but for now, we want to take things one paradigm-shifting innovation at a time. It may sound glib, but we believe it wholeheartedly: the answer to the problems of AI is more AI.
About the authors: Nilesh Jain is a Principal Engineer at Intel Labs where he leads Emerging Visual/AI Systems Research Lab. He focuses on developing innovative technologies for edge/cloud systems for emerging workloads. His current research interests include visual computing, hardware aware AutoML systems. He received M.Sc. degree from Oregon Graduate Institute/OHSU. He is also Sr. IEEE member, and has published over 15 papers and over 20 patents.
Ravi Iyer is an Intel Fellow in Intel Labs where he leads the Emerging Systems Lab. His research interests include developing innovative technologies, architectures and edge/cloud systems for emerging workloads. He has published over 150 papers and has over 40 patents granted. He received his Ph.D. in Computer Science from Texas A&M. He is also an IEEE Fellow.
Related Items:
Why Data Scientists and ML Engineers Shouldnt Worry About the Rise of AutoML
AutoML Tools Emerge as Data Science Difference Makers
What is Feature Engineering and Why Does It Need To Be Automated?
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]
- AI and Machine Learning - Google and National League of Cities develop AI toolkit - SmartCitiesWorld - November 16th, 2024 [November 16th, 2024]
- Machine learning for the physics of climate - Nature.com - November 14th, 2024 [November 14th, 2024]
- Red Hat acquires tech to lower the cost of machine learning - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- SUU Professor Receives Grant to Develop Machine Learning Certificate - Southern Utah University - November 14th, 2024 [November 14th, 2024]
- Research on the timing for subsequent water flooding in Alkali-Surfactant-Polymer flooding in Daqing Oilfield based on automated machine learning -... - November 14th, 2024 [November 14th, 2024]
- SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer -... - November 14th, 2024 [November 14th, 2024]
- Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals - Nature.com - November 14th, 2024 [November 14th, 2024]
- Xbox Series X Machine Learning Hardware Has Some Use Cases, But Microsoft Never Showed Interest in Doing Anything With It - Wccftech - November 14th, 2024 [November 14th, 2024]
- Get An Introduction to Optimization: With Applications to Machine Learning, 5th Edition for FREE and save $106! - BetaNews - November 14th, 2024 [November 14th, 2024]
- New Study Uses fMRI and Machine Learning to Explore Brain Function - AZoRobotics - November 14th, 2024 [November 14th, 2024]
- Introduction to Machine Learning (ML) | by Venkat | Nov, 2024 - Medium - November 14th, 2024 [November 14th, 2024]
- The future of PC gaming will be AI-driven - AMD confirms machine learning FSR 4 for 2025, launching in Call of Duty: Black Ops 6 - TechRadar - November 4th, 2024 [November 4th, 2024]
- Machine-Learning Platform Gives DoD Ability To ID Threat Network Activity - Defense Innovation Unit - November 4th, 2024 [November 4th, 2024]
- Machine Learning Offers a Water Bill Discount to Wealthy Portlander - Willamette Week - November 4th, 2024 [November 4th, 2024]