Artificial Intelligence and Machine Learning in Healthcare | JHL – Dove Medical Press
Innovative scientific and technological developments have ushered in a remarkable transformation in medicine that continues to impact virtually all stakeholders from patients to providers to Healthcare Organizations (HCOs) and the community in general.1,2 Increasingly incorporated into clinical practice over the past few decades, these innovations include widespread use of Electronic Health Records (EHR), telemedicine, robotics, and decision support for surgical procedures. Ingestible microchips allow healthcare providers to monitor patient compliance with prescribed pharmacotherapies and their therapeutic efficacy through big data analysis,15 as well as streamlining drug design, screening, and discovery.6 Adoption of novel medical technologies has allowed US healthcare to maintain its vanguard position in select domains of clinical care such as improving access by reducing wait times, enriching patient-provider communication, enhancing diagnostic accuracy, improving patient satisfaction, augmenting outcome prediction, decreasing mortality, and extending life expectancy.35,7
Yet despite the theoretical advantages of these innovative medical technologies, many issues remain requiring careful consideration as we integrate these novel technologies into our armamentarium. This descriptive literature-based article explicates on the advantages, future potential, challenges, and caveats with the predictable and impending importation of AI and ML into all facets of healthcare.
By far the most revolutionary of these novel technologies is Artificial Intelligence (AI), a branch of computer science that attempts to construct intelligent entities via Machine Learning (ML), which is the ability of computers to learn without being explicitly programed.8 ML utilizes algorithms to identify patterns, and its subspecialty Deep Learning (DL) employs artificial neural networks with intervening frameworks to identify patterns and data.1,8 Although ML was first conceived by computer scientist Arthur Samuel as far back as 1956, applications of AI have only recently begun to pervade our daily life with computers simulating human cognitioneg, visual perception, speech recognition, decision-making, and language translation.8 Everyday examples of AI include smart phones, autonomous vehicles, digital assistants (eg, Siri, Alexa), chatbots and auto-correcting software, online banking, facial recognition, and transportation (eg, Uber, air traffic control operations, etc.). The iterative nature of ML allows the machine to adapt its systems and outputs following exposure to new data with supervised learningie, utilizing training algorithms to predict future events from historical data inputsor unsupervised learning, whereby the machine explores the data and attempts to develop patterns or structures de novo. The latter methodology is often used to determine and distinguish outliers. Neural networks in AI utilize an adaptive system comprised of an interconnected group of artificial neurons and mathematical or computational modeling for processing information from input and output data via pattern recognition.9 Through predictive analytics, ML has demonstrated its effectiveness in the realm of finance (eg, identifying credit card fraud) and in the retail industry to anticipate customer behavior.1,10,11
Extrapolation of AI to medicine and healthcare is expected to increase exponentially in the three principal domains of research, teaching, and clinical care. With improved computational efficiencies, common applications of ML in healthcare will include enhanced diagnostic modalities, improved therapeutic interventions, augmenting and refining workflow by processing large amounts of hospital and national EHR data, more accurate clinical course and prediction through precision and personalized medicine, and genome interpretation. ML can provide basic clinical triage in geographical areas inaccessible to specialty care. It can also detect treatable psychiatric conditions via analysis of affective and anxiety disorders using speech patterns and facial expressions (eg, bipolar disorder, major depression, anxiety spectrum and psychotic disorders, attention deficit hyperactivity disorder, addiction disorders, Tourettes Syndrome, etc.)12,13 (Figure 1). Deep learning algorithms are highly effective compared to human interpretation in medical subspecialties where pattern recognition plays a dominant role, such as dermatology, hematology, oncology, histopathology, ophthalmology, radiology (eg, programmed image analyses), and neurology (eg, analysis for seizures utilizing electroencephalography). Artificial neural networks are being developed and employed for diagnostic accuracy, timely interventions, outcomes and prognostication of neurosurgical conditions, such as spinal stenosis, traumatic brain injury, brain tumors, and cerebral vasospasm following aneurysmal subarachnoid hemorrhage.14 Theoretically, ML can improve triage by directing patients to proper treatments at lower cost and by keeping those with chronic conditions out of costly and time-intensive emergency care centers. In clinical practice, ~5% of all patients account for 50% of healthcare costs, and those with chronic medical conditions comprise 85% of total US healthcare costs.3
Figure 1 Potential Applications of Machine Learning.
Patients can benefit from ML in other ways. For follow-up visits, not having to arrange transportation or take time off work for face-to-face interaction with healthcare providers may be an attractive alternative to patients and to the community, even more so in restricted circumstances like the recent COVID-19 pandemic-associated lockdowns and social distancing.
Ongoing ML-related research and its applications are robust. Companies developing automation, topological data analysis, genetic mapping, and communications systems include Pathway Genomics, Digital Reasoning Systems, Ayandi, Apixio, Butterfly Network, Benevolent AI, Flatiron Health, and several others.1,10
Despite the many theoretical advantages and potential benefits of ML in healthcare, several challenges (Figure 2) must be met15 before it can achieve broader acceptance and application.
Figure 2 Caveats and Challenges with use of Machine Learning.
Frequent software updates will be necessary to ensure continued improvement in ML-assisted models over time. Encouraging the use of such software, the Food and Drug Administration has recommended a pre-certified approach for agility.1,2 To be of pragmatic clinical import, high-quality input-data is paramount for validating and refining diagnostic and therapeutic procedures. At present, however, there is a dearth of robust comparative data that can be validated against the commonly accepted gold standard, comprised of blinded, placebo-controlled randomized clinical trials versus the ML-output data that is typically an area-under-the-curve analysis.1,7 Clinical data generated from ML-assisted calculations and more rigorous multi-variate analysis will entail integration with other relevant patient demographic information (eg, socio-economic status, including values, social and cultural norms, faith and belief systems, social support structures in-situ, etc.).16
All stakeholders in the healthcare delivery system (HCOs, providers, patients, and the community) will have to adjust to the paradigm shift away from traditional in-person interactions. Healthcare providers will have to surmount actual or perceived added workload to avoid burnout especially during the initial adaptive phase. They will also have to cope with increased ML-generated false-positive and -negative alerts. The traditional practice of clinical medicine is deeply entrenched in the framework of formulating a clinical hypothesis via rigorous history-taking and physical examination followed by sequential confirmation through judicious ancillary and diagnostic testing. Such traditional in-person interactions have underscored the importance of an empathetic approach to the provider-patient relationship. This traditional view has been characterized as archaic, particularly by those with a futuristic mindset, who envision an evolutionary change leading to whole body scans that deliver a more accurate assessment of health and diagnosis of disease. However, incidental findings not attributable to symptoms may lead to excessive ancillary tests underscoring the adage testing begets more testing.17
Healthcare is one of the fastest growing segments of the world economy and is presently at a crossroads of unprecedented transformation. As an example, US healthcare expenditure has accelerated dramatically over the past several decades (~19% of Gross National Product; exceeding $4.1 trillion, or $12,500 per person per year)18 with widespread ramifications for all stakeholders including patients and their families, healthcare providers, government, community, and the US economy.1,35 A paradigm shift from volume-based to performance-based reimbursements from third-party payers warrants focus on some of the most urgent issues in healthcare including cost containment, access, and providing low-cost, high-value healthcare commensurate with the proposed six-domain framework (safe, effective, patient-centered, timely, efficient, and equitable) articulated by the Institute of Medicine in 2001.35,19 Of note, uncontrolled use of expensive technology and excessive ancillary testing account for ~2530% of total healthcare costs.17 While technologies will probably never completely replace the function of healthcare providers, they will definitely transform healthcare, benefiting both providers and patients. However, there is a paucity of costbenefit data and analysis of the use of these innovative emerging medical technologies. All stakeholders should remain cost-conscious as the newer technological diagnostic approaches may further drive up the already rising costs of healthcare. Educating and training the next generation of healthcare providers in the context of AI will also require transformation with simulation approaches and inter-professional education. Therefore, the value proposition of novel technologies must be critically appraised via longitudinal and continuous valuations and patient outcomes in terms of its impact on health and disease management.13 To mitigate healthcare costs, we must control the technological imperativethe overuse of technology because of easy availability without due consideration to disease course or outcomes and irrespective of costbenefit ratio.3
Issues surrounding consumer privacy and proprietorship of colossal quantities of healthcare data under an AI regime are legitimate concerns. Malicious or unintentional breaches may result in financial or other harm. Akin to the challenges encountered with EHR, easy access to data and interoperability with broader compatibility of interfaces by healthcare providers spread across space and time will present unique challenges. Databases will likely be owned by large profit-oriented technology companies who may decide to dispense data to third parties. Additional costs are predictable as well, particularly during the early stages of development of ML algorithms, which is likely to be more bearable to large HCOs. Delay in the use of such processes is anticipated by smaller organizations with resulting potential for mergers and acquisitions or even failure of smaller hospitals and clinics. Concerns regarding ownership, responsibility, and accountability of ML algorithms may arise owing to the probability of detrimental outcomes, which ideally should be apportioned between developer, interpreter, healthcare provider, and patient.1 Simulation techniques can be preemptively utilized for ML training for clinical scenarios; practice runs may require formal certification courses and workshops. Regulations must be developed by policymakers and legislative bodies to delineate the role of third-party payers in ML-assisted healthcare financing. Finally, education and training via media outlets, internet, and social media will be necessary to address public opinion, misperceptions, and nave expectations about ML-assisted algorithms.7
For centuries, the practice of medicine has been deeply embedded in a tradition of meticulous history-taking, physical examination, and thoughtful ancillary investigations to confirm clinical hypotheses and diagnoses. The great physician, Sir William Osler (18491919)14,20 encapsulated the desired practice of good medicine with his famous quotes, Listen to your patient he is telling you the diagnosis, The good physician treats the disease; the great physician treats the patient who has the disease, and Medicine is a science of uncertainty and an art of probability. With rapid technological advances, we are at the crossroads of practicing medicine that would be distinctly different from the traditional approach and practice(s), a change that may be characterized as evolutionary.
AI and ML have enormous potential to transform healthcare and the practice of medicine, although these modalities will never substitute an astute and empathetic bedside clinician. Furthermore, several issues remain as to whether their value proposition and cost-benefit are complementary to the overarching focus on providing low-cost, high-value healthcare to the community at large. While innovative technological advances play a critical role in the rapid diagnosis and management of disease, the phenomenon of the technological imperative35,17 deserves special consideration among both public and providers for the future use of AI and ML in delivering healthcare.
The author reports no conflicts of interest in this work.
1. Bhardwaj R, Nambiar AR, Dutta D A Study of Machine Learning in Healthcare. 2017 IEEE 41st Annual Computer Software and Applications Conference. 236241. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8029924. Accessed March 30, 2022.
2. Deo RC. Machine Learning in Medicine. Circulation. 2015;132:19201930. doi:10.1161/CIRCULATIONAHA.115.001593
3. Shi L, Singh DA. Delivering Health Care in America: A Systems Approach. 7th ed. Burlington, MA: Jones & Bartlett Learning; 2019.
4. Barr DA. Introduction to US Health Policy. The Organization, Financing, and Delivery of Health Care in America. 4th ed. Baltimore, MD: John Hopkins University Press; 2016.
5. Wilensky SE, Teitelbaum JB. Essentials of Health Policy and Law. Fourth ed. Burlington, MA: Jones & Bartlett Learning; 2020.
6. Gupta R, Srivastava D, Sahu M, Tiwan S, Ambasta RK, Kumar P. Artificial intelligence to deep learning; machine intelligence approach for drug discovery. Mol Divers. 2021;25:13151360. doi:10.1007/s11030-021-10217-3
7. Dabi A, Taylor AJ. Machine Learning, Ethics and Brain Death Concepts and Framework. Arch Neurol Neurol Disord. 2020;3:19.
8. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Int Med. 2018;284:603619. doi:10.1111/joim.12822
9. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79:25542558. doi:10.1073/pnas.79.8.2554
10. Ghassemi M, Naumann T, Schulam P, Beam AL, Ranganath R Opportunities in Machine Learning for Healthcare. 2018. Available from: https://pdfs.semanticscholar.org/1e0b/f0543d2f3def3e34c51bd40abb22a05937bc.pdf. Accessed March 30, 2022.
11. Jnr YA Artificial Intelligence and Healthcare: a Qualitative Review of Recent Advances and Predictions for the Future. Available from: https://pimr.org.in/2019-vol7-issue-3/YawAnsongJnr_v3.pdf. Accessed March 30, 2022.
12. Chandler C, Foltz PW, Elvevag B. Using machine learning in Psychiatry; the need to establish a Framework that nurtures trustworthiness. Schizophr Bull. 2019;46:1114.
13. Ray A, Bhardwaj A, Malik YK, Singh S, Gupta R. Artificial intelligence and Psychiatry: an overview. Asian J Psychiatr. 2022;70:103021. doi:10.1016/j.ajp.2022.103021
14. Ganapathy K Artificial intelligence in neurosciences-are we really there? Available from: https://www.sciencedirect.com/science/article/pii/B9780323900379000084. Accessed June 10, 2022.
15. Sunarti S, Rahman FF, Naufal M, Risky M, Febriyanto K, Mashina R. Artificial intelligence in healthcare: opportunities and risk for future. Gac Sinat. 2012;35(S1):S67S70. doi:10.1016/j.gaceta.2020.12.019.
16. Yu B, Beam A, Kohane I. Artificial Intelligence in Healthcare. Nature Biomed Eng. 2018;2:719731. doi:10.1038/s41551-018-0305-z
17. Bhardwaj A. Excessive Ancillary Testing by Healthcare Providers: reasons and Proposed Solutions. J Hospital Med Management. 2019;5(1):16.
18. Fact Sheet NHE. Centers for Medicare and Medicaid Services. Available from: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet. Accessed April 14, 2022.
19. Institute of Medicine (IOM). Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, D.C: National Academy Press; 2001.
20. Bliss M. William Osler: A Life in Medicine. New York, NY: Oxford University Press; 1999.
More:
Artificial Intelligence and Machine Learning in Healthcare | JHL - Dove Medical Press
- 3D Shape Tokenization - Apple Machine Learning Research - January 9th, 2025 [January 9th, 2025]
- Machine Learning Used To Create Scalable Solution for Single-Cell Analysis - Technology Networks - January 9th, 2025 [January 9th, 2025]
- Robotics: machine learning paves the way for intuitive robots - Hello Future - January 9th, 2025 [January 9th, 2025]
- Machine learning-based estimation of crude oil-nitrogen interfacial tension - Nature.com - January 9th, 2025 [January 9th, 2025]
- Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients - Nature.com - January 9th, 2025 [January 9th, 2025]
- Staying ahead of the automation, AI and machine learning curve - Creamer Media's Engineering News - January 9th, 2025 [January 9th, 2025]
- Machine Learning and Quantum Computing Predict Which Antibiotic To Prescribe for UTIs - Consult QD - January 9th, 2025 [January 9th, 2025]
- Machine Learning, Innovation, And The Future Of AI: A Conversation With Manoj Bhoyar - International Business Times UK - January 9th, 2025 [January 9th, 2025]
- AMD's FSR 4 will use machine learning but requires an RDNA 4 GPU, promises 'a dramatic improvement in terms of performance and quality' - PC Gamer - January 9th, 2025 [January 9th, 2025]
- Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images -... - January 9th, 2025 [January 9th, 2025]
- Understanding the Fundamentals of AI and Machine Learning - Nairobi Wire - January 9th, 2025 [January 9th, 2025]
- Machine learning can help blood tests have a separate normal for each patient - The Hindu - January 1st, 2025 [January 1st, 2025]
- Artificial Intelligence and Machine Learning Programs Introduced this Spring - The Flash Today - January 1st, 2025 [January 1st, 2025]
- Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of... - January 1st, 2025 [January 1st, 2025]
- Open source machine learning systems are highly vulnerable to security threats - TechRadar - December 22nd, 2024 [December 22nd, 2024]
- After the PS5 Pro's less dramatic changes, PlayStation architect Mark Cerny says the next-gen will focus more on CPUs, memory, and machine-learning -... - December 22nd, 2024 [December 22nd, 2024]
- Accelerating LLM Inference on NVIDIA GPUs with ReDrafter - Apple Machine Learning Research - December 22nd, 2024 [December 22nd, 2024]
- Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis - BMC... - December 22nd, 2024 [December 22nd, 2024]
- Machine learning uncovers three osteosarcoma subtypes for targeted treatment - Medical Xpress - December 22nd, 2024 [December 22nd, 2024]
- From Miniatures to Machine Learning: Crafting the VFX of Alien: Romulus - Animation World Network - December 22nd, 2024 [December 22nd, 2024]
- Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning -... - December 22nd, 2024 [December 22nd, 2024]
- This AI Paper from Microsoft and Novartis Introduces Chimera: A Machine Learning Framework for Accurate and Scalable Retrosynthesis Prediction -... - December 18th, 2024 [December 18th, 2024]
- Benefits and Challenges of Integrating AI and Machine Learning into EHR Systems - Healthcare IT Today - December 18th, 2024 [December 18th, 2024]
- The History Of AI: How Machine Learning's Evolution Is Reshaping Everything Around Us - SlashGear - December 18th, 2024 [December 18th, 2024]
- AI and Machine Learning to Enhance Pension Plan Governance and the Investor Experience: New CFA Institute Research - Fintech Finance - December 18th, 2024 [December 18th, 2024]
- Address Common Machine Learning Challenges With Managed MLflow - The New Stack - December 18th, 2024 [December 18th, 2024]
- Machine Learning Used To Classify Fossils Of Extinct Pollen - Offworld Astrobiology Applications? - Astrobiology News - December 18th, 2024 [December 18th, 2024]
- Machine learning model predicts CDK4/6 inhibitor effectiveness in metastatic breast cancer - News-Medical.Net - December 18th, 2024 [December 18th, 2024]
- New Lockheed Martin Subsidiary to Offer Machine Learning Tools to Defense Customers - ExecutiveBiz - December 18th, 2024 [December 18th, 2024]
- How Powerful Will AI and Machine Learning Become? - International Policy Digest - December 18th, 2024 [December 18th, 2024]
- ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study - Cureus - December 18th, 2024 [December 18th, 2024]
- Blood Tests Are Far From Perfect But Machine Learning Could Change That - Inverse - December 18th, 2024 [December 18th, 2024]
- Amazons AGI boss: You dont need a PhD in machine learning to build with AI anymore - Fortune - December 18th, 2024 [December 18th, 2024]
- From Novice to Pro: A Roadmap for Your Machine Learning Career - KDnuggets - December 10th, 2024 [December 10th, 2024]
- Dimension nabs $500M second fund for 'still contrary' intersection of bio and machine learning - Endpoints News - December 10th, 2024 [December 10th, 2024]
- Using Machine Learning to Make A Really Big Detailed Simulation - Astrobites - December 10th, 2024 [December 10th, 2024]
- Driving Business Growth with GreenTomatos Data and Machine Learning Strategy on Generative AI - AWS Blog - December 10th, 2024 [December 10th, 2024]
- Unlocking the power of data analytics and machine learning to drive business performance - WTW - December 10th, 2024 [December 10th, 2024]
- AI and the Ethics of Machine Learning | by Abwahabanjum | Dec, 2024 - Medium - December 10th, 2024 [December 10th, 2024]
- Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective... - December 10th, 2024 [December 10th, 2024]
- New Amazon SageMaker AI Innovations Reimagine How Customers Build and Scale Generative AI and Machine Learning Models - Amazon Press Release - December 10th, 2024 [December 10th, 2024]
- What is Machine Learning? 18 Crucial Concepts in AI, ML, and LLMs - Netguru - December 5th, 2024 [December 5th, 2024]
- Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda - BMC Infectious Diseases - December 5th, 2024 [December 5th, 2024]
- Interdisciplinary Team Needed to Apply Machine Learning in Epilepsy Surgery: Lara Jehi, MD, MHCDS - Neurology Live - December 5th, 2024 [December 5th, 2024]
- A multimodal machine learning model for the stratification of breast cancer risk - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning based intrusion detection framework for detecting security attacks in internet of things - Nature.com - December 5th, 2024 [December 5th, 2024]
- Machine learning evaluation of a hypertension screening program in a university workforce over five years - Nature.com - December 5th, 2024 [December 5th, 2024]
- Vaultree Introduces VENum Stack: Combining the Power of Machine Learning and Encrypted Data Processing for Secure Innovation - PR Newswire - December 5th, 2024 [December 5th, 2024]
- Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics - pnas.org - December 5th, 2024 [December 5th, 2024]
- AI and Machine Learning - Maryland to use AI technology to manage traffic flow - SmartCitiesWorld - December 5th, 2024 [December 5th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - Yahoo! Voices - December 5th, 2024 [December 5th, 2024]
- Integrating IoT and machine learning: Benefits and use cases - TechTarget - December 5th, 2024 [December 5th, 2024]
- Landsat asks industry for artificial intelligence (AI) and machine learning for satellite operations - Military & Aerospace Electronics - December 5th, 2024 [December 5th, 2024]
- Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications - Nature.com - December 5th, 2024 [December 5th, 2024]
- Polymathic AI Releases The Well: 15TB of Machine Learning Datasets Containing Numerical Simulations of a Wide Variety of Spatiotemporal Physical... - December 5th, 2024 [December 5th, 2024]
- Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China... - December 5th, 2024 [December 5th, 2024]
- Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes - Nature.com - November 30th, 2024 [November 30th, 2024]
- Predicting the time to get back to work using statistical models and machine learning approaches - BMC Medical Research Methodology - November 30th, 2024 [November 30th, 2024]
- AI and Machine Learning - US releases recommendations for use of AI in critical infrastructure - SmartCitiesWorld - November 30th, 2024 [November 30th, 2024]
- Machine learning-based diagnostic model for stroke in non-neurological intensive care unit patients with acute neurological manifestations -... - November 28th, 2024 [November 28th, 2024]
- Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques - Nature.com - November 28th, 2024 [November 28th, 2024]
- Evaluation and prediction of the physical properties and quality of Jatob-do-Cerrado seeds processed and stored in different conditions using machine... - November 28th, 2024 [November 28th, 2024]
- Researchers use fitness tracker data and machine learning to detect bipolar disorder mood swings - Medical Xpress - November 28th, 2024 [November 28th, 2024]
- Advances in AI and Machine Learning for Nuclear Applications - Frontiers - November 28th, 2024 [November 28th, 2024]
- Researchers make machine learning breakthrough in lithium-ion tech here's how it could make aging batteries safer - The Cool Down - November 28th, 2024 [November 28th, 2024]
- Svitla Systems Publishes Results of the Study on Machine Learning's Role in Credit Scoring - Newsfile - November 28th, 2024 [November 28th, 2024]
- Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study - Nature.com - November 28th, 2024 [November 28th, 2024]
- Quantum Machine Learning: Bridging the Future of AI and Quantum Computing - TechBullion - November 28th, 2024 [November 28th, 2024]
- AI and machine learning trends in healthcare - Healthcare Leader - November 28th, 2024 [November 28th, 2024]
- Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics... - November 28th, 2024 [November 28th, 2024]
- Revolutionizing Business Systems with Machine Learning: Practical Innovations for the Modern Era - TechBullion - November 28th, 2024 [November 28th, 2024]
- Can AI improve plant-based meats? Using mechanical testing and machine learning to mimic the sensory experience - Phys.org - November 16th, 2024 [November 16th, 2024]
- Machine Learning Reveals Impact of Microbial Load on Gut Health and Disease - Genetic Engineering & Biotechnology News - November 16th, 2024 [November 16th, 2024]
- Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective... - November 16th, 2024 [November 16th, 2024]
- Apple Researchers Propose Cut Cross-Entropy (CCE): A Machine Learning Method that Computes the Cross-Entropy Loss without Materializing the Logits for... - November 16th, 2024 [November 16th, 2024]
- Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy - Nature.com - November 16th, 2024 [November 16th, 2024]
- Facilitated the discovery of new / Co-based superalloys by combining first-principles and machine learning - Nature.com - November 16th, 2024 [November 16th, 2024]
- Thwarting Phishing Attacks with Predictive Analytics and Machine Learning in 2024 - Petri.com - November 16th, 2024 [November 16th, 2024]
- Optoelectronic performance prediction of HgCdTe homojunction photodetector in long wave infrared spectral region using traditional simulations and... - November 16th, 2024 [November 16th, 2024]
- A new approach for sex prediction by evaluating mandibular arch and canine dimensions with machine-learning classifiers and intraoral scanners (a... - November 16th, 2024 [November 16th, 2024]